

VIII CONGRESSO NAZIONALE SIMEU Rimini, 18-21 Ottobre 2012

CONTROVERSIES IN SEPTIC SHOCK AND MONITORING

Early goal-directed therapy as simple as possible: a "less-invasive" approach to the treatment of Septic Shock in the ED

S. Pasini

Medicina d'Urgenza e Pronto Soccorso A.O. Ospedale Niguarda Ca' Granda (Milano)

19 Ottobre 2012

EARLY GOAL DIRECTED THERAPY (EGDT) A milestone in the treatment of sepsis

Sepsis as a time-dependent disease

 Definition of hemodinamic goals to guide treatment

Effective treatment algorithm (EGDT)

Rivers E et al. "Early goal-directed therapy in the treatment of severe sepsis and septic shock" **NEJM 2001; 345:1368–1377**

EARLY GOAL DIRECTED THERAPY (EGDT)

END POINTS:

1) CVP 8-12mmHg
 2) MAP ≥ 65mmHg
 3) ScvO2 ≥ 70%

(Rivers E et al. "Early goal-directed therapy in the treatment of severe sepsis and septic shock" **NEJM 2001; 345:1368–1377**)

POSSIBLE EGDT PITFALLS

- EGDT as a "BUNDLE": what is the role of each step ?
- Invasive measurement of CVP and ScvO₂:
 - (i) are they accurate ?
 - (ii) are they necessary ?
 - (iii) early = invasive ?
- Feasibility in the ED:
 - (i) resource availability
 - (ii) know-how of the staff
 - (iii) invasive procedure can be postponed ?
- The ED "setting" of the study of Rivers et al can be compared to our ED reality ?

ARE THERE OTHER OPTIONS ?

Evaluating hemodinamics with ultrasound and serum lactate

"LESS INVASIVE" APPROACH TO EGDT

END POINTS:

1) Δ IVC between 50% and 30% 2) MAP \geq 65mmHg 3) lactate clearance > 10%

AIMS

- Feasibility of a "less invasive" approach to EGDT in the first
 6 hours of the septic shock treatment
- Evaluate (a) how many patients can be treated without invasive devices (b) how long can the invasive treatment be postponed (c) if there is a role for "bedside" ultrasound in the identification of the source of infection
- Compare intrahospital mortality, 28 and 60 days mortality of our study with the study Rivers et al (NEJM, 2001)

METHODS

INCLUSION CRITERIA

- Age > 18 years
- Criteria for the diagnosis of sepsis
- Biochemical signs of hypoperfusion (s. lactate >4 mmol/L)

CRYPTIC SHOCK

and / or

Persistent MAP < 65 mmHg after a fluid challenge with 20ml/kg of crystalloids (in 30 minutes)

EXCLUSION CRITERIA

- Acute myocardial infarction
- Pulmonary edema at presentation
- Cardiac arrest
- Pregnancy
- Surgery planned in the first 3 hours of treatment
- Ultrasound of inferior vena cava not adequate for anatomical or clinical reasons

- 47 participants, 22 females and 25 males, mean age was 70.2 years; 13 with cryptic shock (serum lactate >4mmol/L) and 34 with overt septic shock
- Baseline characteristics of patients, interventions and overall mortality have been compared with the EGDT cohort of Rivers (NEJM 2001)

Baseline characteristics of participants

	Present study	Rivers et al	Р
Number of subjects	47	130	
Age (years) [mean ±SD]	70.2 [±15.2]	67.1 [±17.4]	NS
Sex (%)			
M	53.2	50.8	NS
F	46.8	49.2	NS
Apache II score [mean ±SD]	20.2 [±5.6]	21.4 [±6.9]	NS
Comorbidity (%)			
CHD	25.0	36.7	NS
CAD	19.2	26.5	NS
COPD	18	18	NS
Diabetes	23.8	30.8	NS
Liver failure	20.9	23.1	NS
Neurological disease	25.0	34.2	NS
Chronic renal failure	5.8	21.4	0.01
lmmunosuppression	21.2	4.3	0.01
Active cancer	35.3	12.8	0.01
Subgoup of sepsis (%)))	
Cryptic shock	27.6	48.7	0.01
Septic shock	72.4	51.3	0.01
Hemodinamics			
<i>MAP t0 (mmHg)</i> [mean ± <i>S</i> D]	60.1 [±13.6]	74 [±27]	0.01
<i>MAP t6 (mmHg)</i> [mean ± <i>S</i> D]	74.9 [±12.5]	95 [±19]	0.01
S lactate t0 (mmol/L) [mean ±SD]	4.6 [±3.4]	7.7 [±4.7]	0.01
S lactate t6 (mmol/L) [mean ±SD]	3.0 [±2.7]	4.3 [±4.2]	0.04

Feasibility and interventions

Interventions			
Feasibility of inferior vena cava US scan (%)	92.3		
Feasibility of lung US (%)	100		
Total fluids in 6 hours (L) (mean \pm SD)	5.2 (± 2.3)		
CVC inserted (%)	61.7		
Time to CVC (minutes) (mean \pm SD)	154 (± 111)		
Serum lactate testing (%)	100.0		
"Bedside" US identification of the source of infection (%)	32.1		

Compliance with the Surviving Sepsis Campaign

Hemocultures and antibiotics administration				
Total hemocultures (%)	94.2			
Hemocultures in the first 2 hours (%)	96.0			
Positive hemocultures (%)	31.8			
Antibiotics within 1 hour (%)	63.8			
Antibiotics within 6 hours (%)	100			
Time to antibiotics administration (minutes) [mean \pm SD]	71 [± 54]			

Hemodinamic goals achievement

	Present study	Rivers et al
Δ IVC between 30% and 50% (%)	97.1	N.A.
CVP between 8 and 12 mmHg (%)	N.A.	99
MAP ≥ 65 mmHg in 6 hours (%)	89.4	100
Lactate clearance > 10% at 6 hours	70.3	N.A.
ScvO₂ ≥ 70 % (%)	N.A.	94.9
US pattern of lung interstitial syndrome (%)	34.6	N.A.
Clinically overt pulmonary edema (%)	8.5	N.A.
Use of vasopressors (%)	53.1	26.7

Intrahospital, 28 and 60 days Mortality

	Present study	Rivers et al	Р
Number of subjects	47	130	
Intrahospital mortality (%)			
Cryptic Shock (s. lactate >4 mmol/L)	23.1	15.2	NS
Septic Shock	44.1	41	NS
Total mortality (%)			
28 days	34	30.8	NS
60 days	38.3	38.5	NS

CONCLUSIONS

- A "less invasive" US-guided approach to septic shock is easily feasible in the ED in near all cases at least for the first "golden" hours.
- With this approach we spared a CVC in the 40% of cases and in the remaining 60% it was placed for vasopressor infusion (81.2%) or to secure an adequate venous access.
- IVC and lung US have been successfully employed for the administration of an adequate amount of fluids allowing at the same time to avoid or treat promptly pulmonary edema.
- With "bedside" US we were able to identify the source of infection in 1/3 of cases

CONCLUSIONS

- Baseline characteristics and severity score (i.e. APACHE II) of our population were similar to those of Rivers et al. We recorded although a far higher percentage of septic shock and patients with immunosuppression compared with the original EGDT cohort.
- Nevertheless we had a similar intrahospital, 28 and 60 days mortality, supporting further study on the use of our or similar approach in the treatment of septic shock.

CONCLUSIONS

 Baseline characteristics and severity score (i.e. APACHE II) of our population were similar to those of Rivers et al. We recorded although a far higher percentage of septic shock and patients with immunosuppression compared with the original EGDT cohort.

 Nevertheless we had a similar intrahospital, 28 and 60 days mortality, supporting further study on the use of our or similar approach in the treatment of septic shock.

THANK YOU !

###