Learn and Live®

What's new from Guidelines 2010 to Guidelines 2015?

Monica E. Kleinman, MD Chair, Emergency Cardiovascular Care Committee American Heart Association Department of Anesthesia/Critical Care Medicine Children's Hospital Boston

Disclosure Information

FINANCIAL DISCLOSURE: No relevant conflicts

INTELLECTUAL CONFLICTS: Co-author of several chapters in 2010 ILCOR Consensus on Science and Treatment Recommendations (CoSTR) and AHA Guidelines for Emergency Cardiovascular Care

Learn and Live»

WHO statistics

- Cardiovascular diseases (CVDs) are the number one cause of death globally
- An estimated 17.3 million people worldwide died in 2008 from CVDs
- By 2030, almost 23.6 million people will die from CVDs, which are projected to remain the single leading cause of death

Clinical paper

Global incidences of out-of-hospital cardiac arrest and survival rates: Systematic review of 67 prospective studies^{*,**}

Jocelyn Berdowski^{a,*}, Robert A. Berg^b, Jan G.P. Tijssen^a, Rudolph W. Koster^a

Resuscitation 2010;81:1479-1487

Predictors of Survival From Out-of-Hospital Cardiac Arrest A Systematic Review and Meta-Analysis

Comilla Sasson, MD, MS; Mary A.M. Rogers, MS, PhD; Jason Dahl, MD; Arthur L. Kellermann, MD, MPH

Figure 2. OHCA survival to hospital discharge by 5-year time periods (based upon final year of patient enrollment into study).

Sasson et. al. Circ Cardiovasc Qual Outcomes 2010;3:63-81

Regional Variation in Out-of-Hospital Cardiac Arrest Incidence and Outcome

Table 5. Incidence and Outcome of Ventricular Fibrillation ^a											
	Alabama (n = 65)	Dallas (n = 195)	lowa (n = 135)	Milwaukee (n = 165)	Ottawa (n = 429)	Pittsburgh (n = 102)	Portland (n = 249)	Seattle (n = 297)	Toronto (n = 614)	Vancouver (n = 478)	Overall (n = 2729)
Adjusted incidence rate per 100 000	9.9	12.8	12.4	18.7	10.4	9.3	15.1	19.0	11.4	15.2	12.8
Adjusted mortality rate per 100 000	8.8	10.7	8.9	13.7	8.6	7.2	11.3	11.5	9.5	10.9	9.8
Case-fatality rate, %	89.2	82.7	72.9	74.0	83.1	77.5	73.9	59.8	83.0	71.7	76.5
Survival to discharge, %	7.7	9.5	22.7	26.0	14.8	21.5	22.5	39.9	15.7	25.0	21.0
Vital status data missing, %	3.1	7.9	4.4	0	2.1	1.0	3.6	0.3	1.3	3.3	2.5
^a All rates were unequal across s	sites at $P < .($										

SYSTEM of CARE

Amer

CPR is as easy as

oke

American Heart American Stroke Association. Association.

Learn and Live_{*}

Major Changes in 2010

- Chest compressions first (CAB)
- Capnography to assess CPR quality
- No atropine for pulseless arrest
- Importance of organized post-cardiac arrest care
 - Avoid hyperoxia after return of spontaneous circulation
 - Therapeutic hypothermia

Basic Life Support

Travers, A. H. et al. Circulation 2010;122:S676-S684

Copyright ©2010 American Heart Association

Learn and Live_{*}

Hands-only CPR

Hands-first CPR

The latest research shows that chest compressions alone are the most effective way to save a life after an adult collapses from cardiac arrest. Here's what to do. **EMBED 1-COL**.

The Boston Blobe

November 1, 2010

Learn and Live®

Meta-analysis of Survival to Discharge

Hüpfl Lancet 2010; Oct 15

Key topics for consideration in 2015

- Optimizing CPR quality
- Duration of CPR attempts
- Pharmacologic agents
- Optimizing postresuscitation care

CPR Quality

American Heart American Stroke Association_{*} Association_{*}

CPR Feedback Devices

American Heart Association_{*} American Stroke Association_{*}

Learn and Live®

HEART

Frequency distribution of the rate, fraction and depth of chest compressions and the percentage of chest compressions with incomplete release during cardiopulmonary resuscitation stratified by whether monitor-defibrillators provided real-time feedback ('feedback on') or not ('feedback off').

Perkins G D et al. Heart 2012;98:529-535

Copyright © BMJ Publishing Group Ltd & British Cardiovascular Society. All rights reserved.

Learn and Live®

Duration of CPR

Duration of resuscitation efforts and survival after in-hospital cardiac arrest: an observational study

Zachary D Goldberger, Paul S Chan, Robert A Berg, Steven L Kronick, Colin R Cooke, Mingrui Lu, Mousumi Banerjee, Rodney A Hayward, Harlan M Krumholz, Brahmajee K Nallamothu, for the American Heart Association Get With The Guidelines—Resuscitation (formerly the National Registry of Cardiopulmonary Resuscitation) Investigators*

• 64,339 adult cardiac arrests

- 48.5% ROSC
- 15.4% survival to discharge
- 80.6% of survivors with good neurologic status

Goldberger et. al. Lancet 2012

American Heart Association_o American Stroke Association_o

Recom or sponta	meous circu	ulation"	Survival to discharge†					
Adjusted risk ratio (95% CI)	Adjusted rate	p value	Adjusted risk ratio (95% CI)	Adjusted rate	p value			
1-00	45-3%	-	1-00	14-5%				
1-04 (0-99-1-09)	47-0%	0-116	1-05 (0-96-1-14)	15-2%	0-304			
1-08 (1-03-1-13)	48-8%	0-002	1-05 (0-96-1-14)	15-2%	0-280			
1-12 (1-06-1-18)	50-7%	<0-0001	1-12 (1-02-1-23)	16-2%	0-021			
"p for trend < 0-0001. †p for trend 0-031.								
	Adjusted risk ratio (95% Cl) 1-00 1-04 (0-99-1-09) 1-08 (1-03-1-13) 1-12 (1-06-1-18) end 0-031.	Adjusted risk ratio (95% Cl) Adjusted rate 1.00 45.3% 1.04 (0.99-1.09) 47.0% 1.08 (1.03-1.13) 48.8% 1.12 (1.06-1.18) 50.7%	Adjusted risk ratio (95% Cl) Adjusted rate p value p value 1-00 45-3% - 1-04 (0-99-1-09) 47-0% 0-116 1-08 (1-03-1-13) 48-8% 0-0022 1-12 (1-06-1-18) 50-7% <0-0001	Adjusted risk ratio (95% CI) Adjusted real rate p value ratio (95% CI) Adjusted risk ratio (95% CI) 1-00 45-3% - 1-00 1-04 (0-99-1-09) 47-0% 0-116 1-05 (0-96-1-14) 1-08 (1-03-1-13) 48-8% 0-0022 1-05 (0-96-1-14) 1-12 (1-06-1-18) 50-7% <0-0001	Adjusted risk ratio (95% Cl) Adjusted rate p value rate Adjusted risk ratio (95% Cl) Adjusted rate 1.00 45.3% - 1.00 14.5% 1.04 (0.99-1.09) 47.0% 0.116 1.05 (0.96-1.14) 15.2% 1.08 (1.03-1.13) 48.8% 0.002 1.05 (0.96-1.14) 15.2% 1.12 (1.06-1.18) 50.7% <0.0001			

Goldberger et. al. Lancet 2012

American Heart American Stroke Association Association

Learn and Live_{*}

Medications for cardiac arrest

Clinical paper

Effect of adrenaline on survival in out-of-hospital cardiac arrest: A randomised double-blind placebo-controlled trial^{*}

Ian G. Jacobs^{a,c,*}, Judith C. Finn^{a,c}, George A. Jelinek^b, Harry F. Oxer^c, Peter L. Thompson^{d,e}

Learn and Live®

Adrenaline

	Placebo (n = 262)	Adrenaline (n = 272)	OR (95% CI)	P value
ROSC pre- hospital	22 (8.4%)	64 (23.5%)	3.4 (2.0 - 5.6)	P<0.001
Survival to admission	34 (13.0%)	69 (25.4%)	2.3 (1.4 - 3.6)	P<0.001
Survival to discharge	5 (1.9%)	11 (4.0%)	2.2 (0.7 - 6.3)	P = 0.15
CPC 1 or 2	5 (100%)	9 (81.8%)	n/a	P = 0.31

Jacobs IG, Resuscitation 2011;82:1138 - 1143

Meta-analysis of adult RCTs - Vasopressin

American Heart | American Stroke Association_{*} Association_{*}

ROSC

Learn and Live»

	Vasopre	essin	Conti	lo	Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Lindner 1997	8	20	3	20	7.5%	3.78 [0.83, 17.25]	
Stiel 2001	12	104	13	96	17.4%	0.83 [0.36, 1.93]	
Wenzel 2004	57	578	58	588	32.2%	1.00 [0.68, 1.47]	+
Callaway 2006	5	167	4	158	9.2%	1.19 [0.31, 4.51]	
Gueugniaud 2008	24	1439	33	1448	26.7%	0.73 [0.43, 1.24]	
Mentzelopoulos 2009	9	48	2	52	6.9%	5.77 [1.18, 28.24]	
Total (95% CI)		2356		2362	100.0%	1.13 [0.71, 1.78]	+
Total events	115		113				
Heterogeneity: Tau ² = 0	.13; Chi ² =	9.28, di	f= 5 (P =	0.10);1	²= 46%		
Test for overall effect: Z = 0.51 (P = 0.61)							Eavours Control Eavours Vasonressin
В							

Total Events Total Weight M-H, Random, 95% Cl

23.9%

35.9%

30.1%

10.1%

Odds Ratio

0.68 [0.28, 1.63]

0.79 [0.45, 1.40]

0.65 [0.32, 1.31]

5.00 [1.01, 24.87]

0.87 [0.49, 1.52]

Survival to discharge

> Positive neuro outcome

Total (95% CI) 2172 100.0% Total events 53 63 Heterogeneity: Tau² = 0.14; Chi² = 5.51, df = 3 (P = 0.14); l² = 46% Test for overall effect: Z = 0.50 (P = 0.62) C

Vasopressin

10

22

13

8

104

567

1439

2158

48

Events

Study or Subgroup

Gueugniaud 2008

Mentzelopoulos 2009

Stiel 2001

Wenzel 2004

Control

13

28 576

2

20 1448

96

52

Learn and Live_{*}

Post-resuscitation care

- Oxygen
- Re-vascularization
- Temperature control
- Glucose
- Seizures

American Heart American Stroke Association, Association.

Learn and Live_{*}

Association Between Arterial Hyperoxia Following Resuscitation From Cardiac Arrest and In-Hospital Mortality

- >6000 adult patients resuscitated from cardiac arrest prior to ICU admission
- Maximal PaO₂ on first arterial blood gas in the first 24 hours
 - Hypoxia <60 mm Hg
 - Hyperoxia > 300 mm Hg
 - Normoxia 60 300 mm Hg

Kilgannon et. al. JAMA 2010; 303:2165-2171

From: Association Between Arterial Hyperoxia Following Resuscitation From Cardiac Arrest and In-Hospital Mortality

JAMA. 2010;303(21):2165-2171. doi:10.1001/jama.2010.707

Copyright © 2012 American Medical Association. All rights reserved.

Learn and Live»

Oxygen tension and outcomes post-arrest.

Kilgannon J H et al. Circulation 2011;123:2717-2722

Clinical paper

Hyperoxia, hypocapnia and hypercapnia as outcome factors after cardiac arrest in children $\stackrel{\scriptscriptstyle \diamond}{}$

Jimena del Castillo^a, Jesús López-Herce^{a,*}, Martha Matamoros^b, Sonia Cañadas^c, Ana Rodriguez-Calvo^d, Corrado Cechetti^e, Antonio Rodriguez-Núñez^f, Angel Carrillo Álvarez^a, The Iberoamerican Pediatric Cardiac Arrest Study Network RIBEPCI^g

- No association between mortality and PaO₂ in first 24 hours
- Increased mortality for PaCO₂ < 30 mmHg or > 50 mmHg after ROSC (50 and 59% vs. 33.1%, p= 0.02)

American Heart Association_® American Stroke Association_®

Learn and Live_{*}

Summary

- Cardiovascular diseases remain the leading cause of death worldwide
- Advances in resuscitation are essential to improve survival
 - CPR quality
 - CPR duration
 - Pharmacology
 - Post-resuscitation care

Learn and Live»

Grazie!

monica.kleinman@childrens.harvard.edu