Passive Leg Raising

Advantages and limits

Prof. Jean-Louis TEBOUL

Medical ICU Bicetre hospital University Paris South France

Passive Leg Raising: the advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- **PLR well predicts** fluid responsiveness ... in situations where **PPV fails** to do it

Passive Leg Raising: the advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- PLR may well assess fluid responsiveness ... in situations where PPV fails to do it

Intensive Care Med (2008) 34:659-663

CLINICAL COMMENTARY

Xavier Monnet Jean-Louis Teboul **Passive leg raising**

Changes in BP Induced by Passive Leg Raising Predict Response to Fluid Loading in Critically III Patients*

Thierry Boulain, MD; Jean-Michel Achard, MD; Jean-Louis Teboul, MD; Christian Richard, MD; Dominique Perrotin, MD; and Guy Ginies, MD

CHEST 2002; 121:1245–1252

Transient hemodynamic effects

Real-time monitoring is required

can predict the hemodynamic response to fluid infusion

can predict the **hemodynamic response** to **fluid infusion**

Passive leg raising predicts fluid responsiveness in the critically ill*

Xavier Monnet, MD, PhD; Mario Rienzo, MD; David Osman, MD; Nadia Anguel, MD; Christian Richard, MD; Michael R. Pinsky, MD, Dr hc; Jean-Louis Teboul, MD, PhD

Crit Care Med 2006; 34:1402–1407

Passive leg raising predicts fluid responsiveness in the critically ill*

Xavier Monnet, MD, PhD; Mario Rienzo, MD; David Osman, MD; Nadia Anguel, MD; Christian Richard, MD; Michael R. Pinsky, MD, Dr hc; Jean-Louis Teboul, MD, PhD Crit Care Med 2006; 34:1402–1407

can predict the **hemodynamic response** to **fluid infusion**

can predict the **hemodynamic response** to **fluid infusion**

Changes in stroke volume induced by passive leg raising in spontaneously breathing patients: comparison between echocardiography and Vigileo™/FloTrac™ device

Matthieu Biais, Lionel Vidil, Philippe Sarrabay, Vincent Cottenceau, Philippe Revel and François Sztark

Critical Care 2009, **13**:R195

can predict the **hemodynamic response** to **fluid infusion**

Intensive Care Med 2012	ORIGINAL
Xavier Monnet Aurélien Bataille Eric Magalhaes Jérôme Barrois Marine Le Corre Clément Gosset Laurent Guerin Christian Richard Jean-Louis Teboul	End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test

Intensive Care Med 2012	ORIGINAL	
Xavier Monnet Aurélien Bataille Eric Magalhaes Jérôme Barrois Marine Le Corre Clément Gosset Laurent Guerin Christian Richard Jean-Louis Teboul	End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test	

can predict the **hemodynamic response** to **fluid infusion**

Intensive Care Med (2007) 33:1125–1132

Bouchra Lamia Ana Ochagavia Xavier Monnet Denis Chemla Christian Richard

Jean-Louis Teboul

ORIGINAL

Echocardiographic prediction of volume responsiveness in critically ill patients with spontaneously breathing activity

can predict the **hemodynamic response** to **fluid infusion**

USCOM

Two access windows for measuring CO

• the suprasternal notch for the aortic valve (simple probe positioning, image quick to acquire)

Nonimaging transthoracic probe and continuous-wave Doppler ultrasound to obtain a beat-to-beat flow profile that can provide a real-time velocity time integral (VTI)

The cross-sectional area of a vessel is predicted by a height- and weight-based nomogram incorporated in the USCOM software

Non-invasive stroke volume measurement and passive leg raising predict volume responsiveness in medical ICU patients: an observational cohort study

Steven W Thiel, Marin H Kollef and Warren Isakow

Critical Care 2009, 13:R111

can predict the **hemodynamic response** to **fluid infusion**

Real-time CO response to PLR

PCCI

Bioreactance

Passive Leg Raising: the advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- PLR may well assess fluid responsiveness ... in situations where PPV fails to do it

reversible hemodynamic effects

No risk of pulmonary edema

Passive Leg Raising: the advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- PLR may well assess fluid responsiveness ... in situations where PPV fails to do it

Clinical Use of Respiratory Changes in Arterial Pulse Pressure to Monitor the Hemodynamic Effects of PEEP

FRÉDÉRIC MICHARD, DENIS CHEMLA, CHRISTIAN RICHARD, MARC WYSOCKI, MICHAEL R. PINSKY, YVES LECARPENTIER, and JEAN-LOUIS TEBOUL

AM J RESPIR CRIT CARE MED 1999;159:935-939

Relation between Respiratory Changes in Arterial Pulse Pressure and Fluid Responsiveness in Septic Patients with Acute Circulatory Failure

FRÉDÉRIC MICHARD, SANDRINE BOUSSAT, DENIS CHEMLA, NADIA ANGUEL, ALAIN MERCAT, YVES LECARPENTIER, CHRISTIAN RICHARD, MICHAEL R. PINSKY, and JEAN-LOUIS TEBOUL

Am J Respir Crit Care Med 2000,162:134-138

Passive Leg Raising: The advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- PLR may well assess fluid responsiveness ... in situations where PPV fails to do it
 - Spontaneous Breathing activity

Passive Leg Raising: The advantages

- PLR provides a good prediction of fluid responsiveness
- Unlike fluid challenge, effects of PLR are rapidly reversible
- PLR may well assess fluid responsiveness
 ... in situations where PPV fails to do it
 - Spontaneous Breathing activity
 - Low lung compliance

Passive leg-raising and end-expiratory occlusion tests perform better than pulse pressure variation in patients with low respiratory system compliance

Xavier Monnet, MD, PhD; Alexandre Bleibtreu, MD; Alexis Ferre, MD; Martin Dres, MD; Rim Gharbi, MD; Christian Richard, MD; Jean-Louis Teboul, MD, PhD

Crit Care Med 2012; 40:152–157

Passive Leg Raising: the "limits"

• **PLR** should **not** start from a **horizontal** patient's position but from a **semi-recumbent** position

Passive Leg Raising: the "limits"

- PLR should not start from a horizontal patient's position but from a semi-recumbent position
- The hemodynamic **response** to **PLR should not** be monitored with **arterial pressure** but **with CO** measurements

Intensive Care Med (2010) 36:1475–1483 REVIEW

Fabio Cavallaro

Claudio Sandroni

Cristina Marano Giuseppe La Torre

Alice Mannocci Chiara De Waure

Giuseppe Bello Riccardo Maviglia Massimo Antonelli Diagnostic accuracy of passive leg raising for prediction of fluid responsiveness in adults: systematic review and meta-analysis of clinical studies

PLR-induced changes in CO

Study name	sample size	AUC
Manual CCN4 2000	74	0.00
Wonnet CCIVI 2006	/1	0.96
Lafanéchère CC 2006	22	0.95
Lamia ICM 2007	24	0.96
Maizel ICM 2007	34	0.89
Monnet CCM 2009	34	0.94
Thiel CC 2009	102	0.89
Biais CC 2009	30	0.96
Preau CCM 2010	34	0.94
	351	0.95

Passive leg raising predicts fluid responsiveness in the critically ill* Xavier Monnet, MD, PhD; Mario Rienzo, MD; David Osman, MD; Nadia Anguel, MD; Christian Richard, MD; Michael R. Pinsky, MD, Dr hc; Jean-Louis Teboul, MD, PhD Crit Care Med 2006; 34:1402–1407 PLR-induced changes in aortic blood flow 80 60 % change from Baseline 40 * 20 **10** 0 **Falses negative ca** -20 -40 -R NR

