Gestione della NIV in PS: indicazioni e criticità

Dott.ssa Cristina Magliocco

UOC di PS e Medicina D'Urgenza Ospedale Sandro Pertini - Roma Direttore Dr Francesco Rocco Pugliese

since since

ROMA 24-26 MAGGIO 2018

INDICAZIONI ALLA NIV IN PS

 Insufficienza respiratoria acuta o «de novo»

Quando

 acuta su cronica (ovvero cronica riacutizzata)

QUALI PAZIENTI VENTILARE?

Sintomi e segni di distress respiratorio

Dispnea di grado moderato-severo FR> 24 (>30 nella forma ipossiemica) Reclutamento della muscolatura accessoria Alterazione del sensorio

Alterazioni emogasanalitiche:

PaCO₂ > 45 mmHg (o incremento di 15-20 mmHg) pH < 7.35 (> 7.10) P/F < 200 (< 300)

Medical Progress

Advances in Mechanical Ventilation

MARTIN J. TOBIN, M.D.

N Engl J Med, Vol. 344, No. 26 · June 28, 2001

The objectives of mechanical ventilation are primarily to <u>decrease the work</u> of breathing and reverse lifethreatening <u>hypoxemia</u> or <u>acute progressive respira</u>torv acidosis.

TASK FORCE REPORT ERS/ATS GUIDELINES

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ^[1], Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

ERS/ATS GUIDELINES | B. ROCHWERG ET AL.

TABLE 2 Recommendations for actionable PICO questions

Clinical indication#	Certainty of evidence ¹¹	Recommendation
Prevention of hypercapnia in COPD exacerbation	00	Conditional recommendation against
Hypercapnia with COPD exacerbation	$\oplus \oplus \oplus \oplus$	Strong recommendation for
Cardiogenic pulmonary oedema	000	Strong recommendation for
Acute asthma exacerbation		No recommendation made
Immunocompromised	000	Conditional recommendation for
De novo respiratory failure		No recommendation made
Post-operative patients	@@@	Conditional recommendation for
Palliative care	000	Conditional recommendation for
Trauma	000	Conditional recommendation for
Pandemic viral illness		No recommendation made
Post-extubation in high-risk patients (prophylaxis)	00	Conditional recommendation for
Post-extubation respiratory failure	⊕⊕	Conditional recommendation against
Weaning in hypercapnic patients	000	Conditional recommendation for

*: all in the setting of acute respiratory failure; 1: certainty of effect estimates: +++++, high; ++++, moderate; +++, low; +, very low.

CONTROINDICAZIONI ALLA NIV

BTS (2002) [3]	ATS/ERS (2000-2001) [4] NAVA S. et al. (2		NAVA 5. et al. (2009) [1]
Facial trauma/burns	Cardiac or respiratory arrest	Ë	Respiratory arrest
Recent facial, upper airway, or upper gastrointestinal tract surgery *	Severe encephalopathy (e.g., GCS < 10 **)	ABSOULTE	Unable to fit mask
Fixed obstruction of the uppe <mark>r airway</mark>	Severe upper gastrointestinal bleeding		Medically unstable— hypotensive shock, uncontrolled cardiac ischaemia or arrhythmia, uncontrolled copious upper gastrointestinal bleeding
inability to protect airway *	Hemodynamic instability or unstable cardiac arrhythmia		Agitated, uncooperative
Life threatening hypoxaemia	Facial surgery, trauma, or deformity	RELATIVE	Unable to protect airway
Haemodynamic instability *	Upper airway obstruction	RELA	Swallowing impairment
Severe co-morbidity *	Inability to cooperate/protect the airway		Excessive secretions not managed by secretion clearance techniques
Impaired consciousness *	Inability to clear respiratory secretions		Multiple (ie, two or more) organ failure
Confusion/agitation *	High risk for aspiration		Recent upper airway or upper gastrointestinal surgery
Vomilling	* NIV may be used, despite the presence of these contraindications, if it is to be the "ceiling" of treatment [3] ** GCS: Glasgow Come Scale		
Bowel obstruction *			
Copious respiratory secretions *			
Focal consolidation on chest radiograph *			
Undrained pneumothorax *			

«A decision about tracheal intubation should be made before commencing NIV in every patient»

BTS GUIDELINE THORAX 2002; 192-211

Emerg Med Clin N Am 34 (2016) 51-62

Noninvasive Ventilation for the Emergency

Table 2 Predictors of the failure or success of NIV after 1 hour	
Failure	Success
Sepsis as a cause of the respiratory failure	Improving pH
ARDS	Improving Paco ₂
Higher severity score (SAPS II)	Improving Pao ₂ /Fio ₂ ratio

Abbreviations: ARDS, acute respiratory distress syndrome; Fio₂, fraction of inspired oxygen; NIV, noninvasive ventilation; Paco₂, partial pressure of carbon dioxide in arterial blood; Pao₂, partial pressure of oxygen in arterial blood; SAPS, Simplified Acute Physiology Score.

emergency department (ED) patients with ARF. The use of NIV is associated with decreased rates of intubation and mortality.^{1,2} Importantly, the use of NIV requires knowledge of appropriate patient selection, modes of delivery, selection of the correct amount of positive pressure, and appropriate methods of monitoring the patient.

La ventilazione non invasiva (NIV) migliora l'ossigenazione e la ventilazione, previene l'intubazione endotracheale e riduce il tasso di mortalità in pazienti selezionati con insufficienza respiratoria acuta.

Pazienti selezionati

NIV NELL'INSUFFICIENZA RESPIRATORIA ACUTA

Addestramento del personale

- \circ Tecnico
- Motivazionale
- o Verificabile. Riverificabile
- Nursing infiermieristico

AMBIENTE IDONEO

- o Ventilatori, sistemi di ossigenazione
- Sistemi di monitoraggio adeguati
- Logistica dei locali
 - Percorsi, protocolli condivisi

Qual è il paziente ideale candidato alla NIV?

Quello che ci prova ma non ce la fa...

ORIGINAL ARTICLE

Non-invasive ventilation as a first-line treatment for acute respiratory failure: "real life" experience in the emergency department

C Antro, F Merico, R Urbino, V Gai

Emerg Med J 2005;22:772-777. doi: 10.1136/emj.2004.018309

«Il tasso complessivo di successo della NIV (60,5%) è molto inferiore a quello riportato negli studi randomizzati, ma è paragonabile a quello di altri studi osservazionali simili».

Eur Respir J. 2008 Apr;31(4):874-86. doi: 10.1183/09031936.00143507.

Noninvasive positive pressure ventilation in the acute care setting: where are we?

Abstract

Noninvasive positive pressure ventilation (NPPV) is a technique used to deliver mechanical

ventilation t	CONCLUSIONS
examines th	
different co	Noninvasive positive pressure ventilation has assumed an important role in managing patients with
	acute respiratory failure. Even in conditions in which noninvasive positive pressure ventilation has
Strong evid	strong evidence of success, patients should be monitored closely for signs of treatment failure and
well as to fa	should be promptly intubated before a crisis develops. The application of noninvasive positive
disease and	pressure ventilation by a trained and experienced team, with careful patient selection and choice
patients. W	of appropriate location and setting, should optimise patient outcomes. It should be made clear that
exacerbatic	noninvasive positive pressure ventilation is not a panacea nor the "poor man's" technique of
respiratory	mechanical ventilation. Conversely, it cannot replace endotracheal intubation in all circumstances.
clinical and phy	siological monitoring for signs of treatment failure and, in such cases, ETI should
be promptly ava	ailable. A trained team, careful patient selection and optimal choice of devices can
optimise outcon	ne of NPPV.

Noninvasive positive pressure ventilation is increasingly being used in the management of acute respiratory failure but caregivers must respect evidence-supported indications and avoid contraidincations. Additionally, the technique must be applied in the appropriate location by a trained team in order to avoid disappointing results.

N. Ambrosino, and G. Vagheggini Eur Respir J 2008;31:874-886

Target	Tool	
Clinical		
Sensorium	KELLY and MATTHAY [107] scale, Glasgow Coma Scale	
Dyspnoea	Borg Scale, Visual Analogue Scale	
Respiratory rate	Clinical, ventilator monitor	
Respiratory distress	Use of accessory muscles, abdominal paradox	
Mask comfort	Clinical	
Compliance with ventilator setting	Clinical	
Vital signs	Clinical	
Physiology		
Arterial oxygen saturation	Pulse oximetry, arterial blood gas sample (frequently during first hours)	
Arterial blood pressure	Clinical, monitoring (noninvasive)	
ECG		
Ventilator setting		
Air leaks	Clinical, ventilator monitor	
Patient-ventilator interaction	Clinical, ventilator monitor	
Set parameters	Ventilator monitor	

Annals of Internal Medicine

ARTICLE

Which Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease Benefit from Noninvasive Positive-Pressure Ventilation?

A Systematic Review of the Literature

Sean P. Keenan, MD, FRCPC, MSc (Epid); Tasnim Sinuff, MD, FRCPC; Deborah J. Cook, MD, FRCPC, MSc (Epid); and Nicholas S. Hill, MD

EARLY TO AVOID INTUBATION ENDOTRACHEAL INTUBATION

Unit of expression equates a reduction of 1.0 as equal to a 100% risk difference or absolute risk reduction. NPPV = noninvasive positive-pressure ventilation.

Acidosis, non-invasive ventilation and mortality in hospitalised COPD exacerbations

C M Roberts,^{1,2} R A Stone,^{1,3} R J Buckingham,¹ N A Pursey,¹ D Lowe,¹ On behalf of the National Chronic Obstructive Pulmonary Disease Resources and Outcomes Project (NCROP) implementation group

Conclusions COPD admissions treated with NIV in usual clinical practice were severely ill, many with mixed metabolic acidosis. Some eligible patients failed to receive NIV, others received it inappropriately. NIV appears to be often used as a ceiling of treatment including patient groups in whom efficacy of NIV is uncertain. The audit raises concerns that challenge the respiratory community to lead appropriate clinical improvements across the acute sector.

MA 24-26 MAGGIO 2018

KEY POINTS

La NIV nell'insufficienza respiratoria acuta ipercapnica rappresenta un *gold standard.*

Se applicata precocemente:

Riduce significativamente in tasso di IOT, la mortalità e le complicanze infettive

Cautela, invece, è richiesta nel trattamento delle forme di acidosi più severa, sia pur riducendo le complicanze infettive e la durata della degenza rispetto all'IOT, il rischio di IOT è più elevato.

Expertise, corretta selezione del paziente e dell'ambiente in cui trattarlo sono importanti chiavi per il successo.

COICINA D'F

SIMEU

BTS/ICS guideline for the ventilatory management of acute hypercaphic respiratory failure in adults

A Craig Davidson,¹ Stephen Banham,¹ Mark Elliott,² Daniel Kennedy,³ Colin Gelder,⁴ Alastair Glossop,⁵ Alistair Colin Church,⁶ Ben Creagh-Brown,⁷ James William Dodd,^{8,9} Tim Felton,¹⁰ Bernard Foëx,¹¹ Leigh Mansfield,¹² Lynn McDonnell,¹³ Robert Parker,¹⁴ Caroline Marie Patterson,¹⁵ Milind Sovani,¹⁶ Lynn Thomas,¹⁷ BTS Standards of Care Committee Member, British Thoracic Society/Intensive Care Society Acute Hypercapnic Respiratory Failure Guideline Development Group, On behalf of the British Thoracic Society Standards of Care Committee

ROMA 24-26 MAGGIO 2018

BTS/ICS guideline for the ventilatory management of acute hypercapnic respiratory failure in adults

A Craig Davidson, ¹ Stephen Banham, ¹ Mark Elliott, ² Daniel Kennedy, ³ Colin Gelder, ⁴ Alastair Glossop, ⁵ Alistair Colin Church, ⁶ Ben Creagh-Brown, ⁷ James William Dodd, ^{8,9} Tim Felton, ¹⁰ Bernard Foëx, ¹¹ Leigh Mansfield, ¹² Lynn McDonnell, ¹³ Robert Parker, ¹⁴ Caroline Marie Patterson, ¹⁵ Milind Sovani, ¹⁶ Lynn Thomas, ¹⁷ BTS Standards of Care Committee Member, British Thoracic Society/Intensive Care Society Acute Hypercapnic Respiratory Failure Guideline Development Group, On behalf of the British Thoracic Society Standards of Care Committee

Acute asthma

Recommendations

39. NIV should not be used in patients with acute asthma exacerbations and AHRF (Grade C).

40. Acute (or acute on chronic) episodes of hypercapnia may complicate chronic asthma. This condition closely resembles COPD and should be managed as such (Grade D).

Non-invasive ventilation for acute hypoxemic respiratory failure: intubation rate and risk factors

Arnaud W Thille 🔤 , Damien Contou , Chiara Fragnoli , Ana Córdoba-Izquierdo , Florence Boissier and Christian Brun-Buisson

Critical Care 2013 17:R269

Critical care 2013, 17-26

KEY POINTS

La NIV nell'insufficienza respiratoria acuta de novo **NON** rappresenta un gold standard.

È necessaria un'accurata selezione del paziente da trattare: EPA, IRA post chirurgica e immunodepressione rappresentano la categoria con più alta evidenza di successo della NIV

Cautela, invece, è richiesta nel trattamento delle CAP/ARDS con NIV: monitoraggio, rapida valutazione di efficacia (1-2 ore), rapido passaggio alla IET se necessario

Il casco potrebbe rappresentare la scelta più efficace

Alti flussi prima scelta e dovrebbero essere introdotti non appena si renda necessario aumentare i flussi di O2> 5 l/m

BMC Pulm Med. 2014; 14: 19. Published online 2014 Feb 13. doi: <u>10.1186/1471-2466-14-19</u> PMCID: PMC3925956

ROMA 24-26 MAGGIO 2018

«NIMV MAY BE AN ALTERNATIVE, IN PATIENTS REFUSING INVASIVE MV, OR FOR THOSE IN WHOM THE PHISICIAN IN CHARGE DECIDED THAT INVASIVE MV MAY BE UNETHICAL...»

WISACHI M. ANTONELLI M. EUR. RESPIRATORY JOURNAL 2001

THE LANCET

PAZIENTI DNI

Palliative use of non-invasive ventilation in end-of-life patients with solid tumours: a randomised feasibility trial.

Nava S¹, Ferrer M, Esquinas A, Scala R, Groff P, Cosentini R, Guido D, Lin CH, Cuomo AM, Grassi M

Author information

Abstract

BACKGROUND: Despite best-possible medical management, many patients with end-stage cancer experience breathlessness.

BACKGROUND: Despite best-possible medical management, many patients with end-stage cancer experience breathlessness, especially towards the end of their lives. We assessed the acceptability and effectiveness of non-invasive mechanical ventilation (NIV) versus oxygen therapy in decreasing dyspnoea and the amount of opiates needed.

METHODS: In this randomised feasibility study, we recruited patients from seven centres in Italy, Spain, and Taiwan, who had solid tumours and acute respiratory failure and had a life expectancy of less than 6 months. We randomly allocated patients to receive either NIV (using the Pressure Support mode and scheduled on patients' request and mask comfort) or oxygen therapy (using a Venturi or a reservoir mask). We used a computer-generated sequence for randomisation, stratified on the basis of patients'

Ricuzione della test one point on the Borg scale. Our primary indpoints were to assess the acceptability of NIV used solely as a palliative measure and to assess its

Riduzione dos not the transformed parents between Jan 19, 2008, and Waren 9, 2011, or 23+ parents eligible for recruitment, we randomly allocated 200 (85%) to treatment: 99 to NIV and 101 to oxygen. 11 (11%) patients in the NIV group discontinued treatment; no patients

Top con

Riduzione tp c

in the oxygen group discontinued treatment. Displace decreased more rapidly in the NIV group compared with the oxygen group (20 rate chind the pressure of the first because of the first of the first hour of treatment and in hypercaphic patients. The total the of morphine during the first 48 h was lower in the NIV group than it was in the oxygen group (26.9 mg [37.3] for NIV vs 59.4 mg [SD 67.1] for oxygen; mean difference -32.4 mg, 95% Cl -47.5 to -17.4). Adverse events leading to NIV discontinuation were mainly related to mask intolerance and anxiety. Morphine was suspended because of severe vomiting and nausea (one patient in each group), sudden respiratory arrest (one patient in the NIV group), and myocardial infarction (one patient in the oxygen group).

INTERPRETATION: Our findings suggest that NIV is more effective compared with oxygen in reducing dyspnoea and decreasing the doses of morphine needed in patients with end-stage cancer. Further studies are needed to confirm our findings and to assess the effectiveness of NIV on other outcomes such as survival. The use of NIV is, however, restricted to centres with NIV equipment, our findings are not generalisable to all cancer or palliative care units.

TASK FORCE REPORT ERS/ATS GUIDELINES

Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure

Bram Rochwerg ¹, Laurent Brochard^{2,3}, Mark W. Elliott⁴, Dean Hess⁵, Nicholas S. Hill⁶, Stefano Nava⁷ and Paolo Navalesi⁸ (members of the steering committee); Massimo Antonelli⁹, Jan Brozek¹, Giorgio Conti⁹, Miquel Ferrer¹⁰, Kalpalatha Guntupalli¹¹, Samir Jaber¹², Sean Keenan^{13,14}, Jordi Mancebo¹⁵, Sangeeta Mehta¹⁶ and Suhail Raoof^{17,18} (members of the task force)

Conclusions

Based on a systematic review of the literature, and building upon previous meta-analyses and guidelines,

La NIV, così come le attre settings (table 2). Ou recommendations are largery in line with guidelines guida, noine dovrebbe i mai prescincere chala gitterizion climic od information have become available. We anticipate that some of these recommendations will change in the future as new studies are completed, especially regarding the use of NIV as opposed to other emerging technologies such as high-flow nasal cannula therapy and extracorporeal CO₂ removal. We emphasise that these guidelines should not be interpreted as absolute and should be implemented based on patient

factors, including individual values and preferences, only in combination with clinical judgement. We also refer readers to the supplementary material in which we address a number of issues related to practical application of NIV that have not been subject to the GRADE process.

