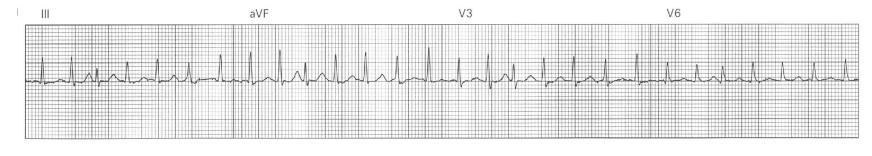
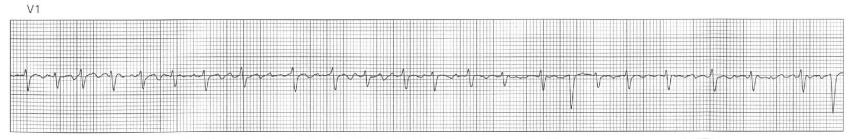
TORNIAMO A SCUOLA

Fibrillazione atriale: quale terapia per quale paziente

A.Conti


Medicina d'Urgenza


Evaluation and Initial Treatment of Supraventricular Tachycardia

- A 68-year-old woman presents to the emergency department with the sole symptom of "a racing heart," which began abruptly while she was eating dinner.
- She reports having had prior episodes of palpitations that resolved spontaneously.
- In the emergency room, her blood pressure is 124/60 mm Hg.
- How should this case be managed?

0

CASE # X

Evaluation and Initial Treatment of Supraventricular Tachycardia

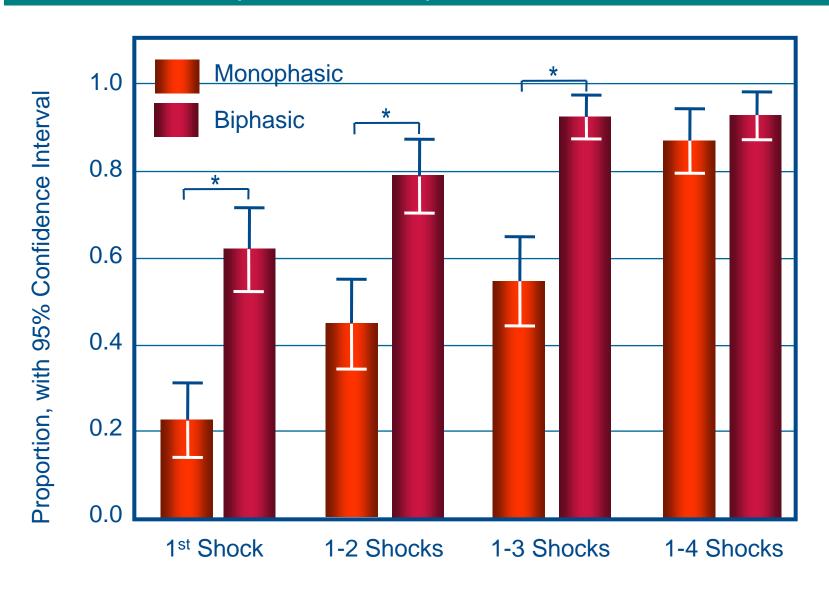
- A 68-year-old woman presents to the emergency department with the sole symptom of "a racing heart," which began abruptly while she was eating dinner.
- She reports having had prior episodes of palpitations that resolved spontaneously.
- In the emergency room, her blood pressure is 124/60 mm Hg.
- How should this case be managed?
- CASE # X
- This patient has an irregular narrow-complex tachycardia, with HR 150 b/min, with a sudden onset, as assessed on the basis of the history.
- Possibilities include atrial fibrillation...

and multifocal atrial or irregular high heart rate flutter?.

Recommendations

- The narrow QRS complex rules out ventricular tachycardia; the irregular response rules out supraventricular tachycardia.
- The heart rate of 150 beats per minute is consistent with atrial fibrillation.
- Furthermore, the suddenness of the onset of symptoms and the absence of clear P waves suggest atrial fibrillation.
- …evaluation, diagnostic strategy and
- …treatment.....

Recommendations


- The narrow QRS complex rules out ventricular tachycardia; the irregular response rules out supraventricular tachycardia.
- The heart rate of 150 beats per minute is consistent with atrial fibrillation.
- Furthermore, the suddenness of the onset of symptoms and the absence of clear P waves suggest atrial fibrillation.
- Flecainide, Propafenone, Vernakalant and Amiodarone would be expected to terminate the atrial fibrillation, or DC shock.

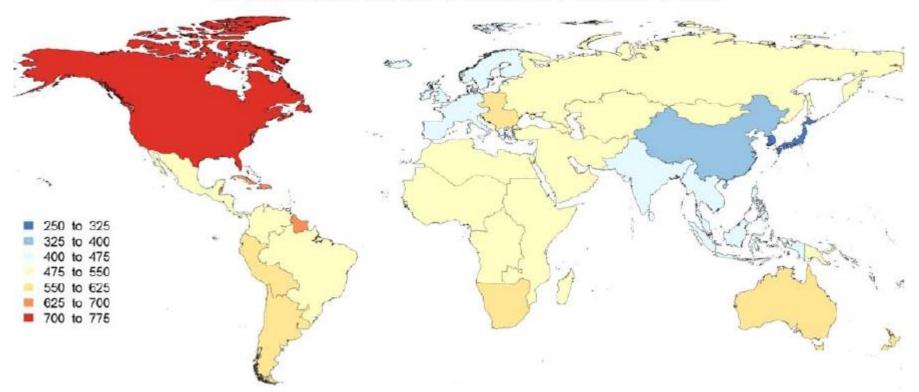
AADs and action

CLASS	SAN	AVN	Accessory pathways	Ventricles	Atria	
IA	/	/	yes	yes	yes	
IB	no	no	no	yes	no	
IC	yes	yes	yes	yes	yes	
· ·	yes	yes	no	no	no	
III	yes	yes	yes	yes	yes	
IV	yes	yes	no	no	no	

*

Cumulative Success in Cardioversion of A. Fib: Biphasic vs. Monophasic Waveform

Primary Therapeutic Aims in AFib


- Restore and maintain sinus rhythm whenever possible
- Prevent thromboembolic events

In order to:

- Reduce symptoms and improve QoL
- Minimize impact of AFib on cardiac performance
- Reduce risk of stroke
- Minimize cardiac remodelling

Atrial Fibrillation: overview

33 Million Individuals Across the Globe ~5 Million New Cases Each Year

Atrial Fibrillation: overview

Atrial Fibrillation

represent the most common cardiac arrhythmia

in acute cardiac care (1-2% of ED visits),

in hospitalization (21-31% of hospitalization for arrhythmia)

Atrial Fibrillation: overview

Atrial Fibrillation

represent the most common cardiac arrhythmia

in acute cardiac care

in hospitalization

The worldwide age-adjusted prevalence of AF is near 4-6% (women and men, respectively)

Overall, 6 millions of individuals in Europe and 3-5 million in the USA have AF

The Consequences of AF

Thromboembolism

- Stroke: 4.5× risk
- Microemboli: cognitive function
 - Prothrombotic state

Hospitalizations

- Most common arrhythmia requiring hospitalization
- 2-3× risk for hospitalization

Quality of life

 Palpitations, dyspnea, fatigue, exercise tolerance

Mortality

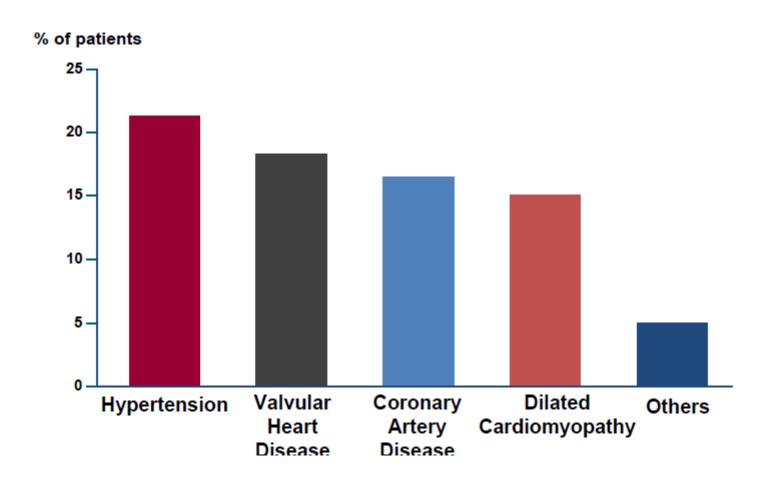
- 2× risk independent of comorbid CV disease
- Sudden death in HF and HCM

Impaired hemodynamics

- Loss of atrial kick
- Irregular ventricular contractions
 - Heart failure
 - Tachycardia-induced cardiomyopathy

Costly

High prevalence results in a major public health-care burden


annual incremental cost US\$26 billion in USA, and 3.2 million hospital-days. In Europe the estimated combined annual cost in all five countries was 6.2 billion

Heart Disease and Stroke Statistical Update 2014, Circulation 2014. Van Gelder IC et al. *Europace*. 2006;8:943-9; Narayan SM et al. *Lancet*. 1997;350:943-50. Wattigney WA et al. Circulation. 2003;108:711-6. Wyse DG et al. Circulation. 2004;109:3089-95.

Pinghorg A et al. European 2009:10, 402, 411 () Kim M. H. et al Circ. Cardiovana Qual Qutanman 2

Ringborg, A. et al. Europace 2008;10, 403–411 ().Kim, M. H. et al Circ. Cardiovasc. Qual. Outcomes 2011; 4, 313–320. Conen D, et al JAMA 2011;305(20):2080-2087. Miyasaka Y et al J AmColl Cardiol. 2007;49(9):986-992

AF and other conditions

Atrial Fibrillation

Cardiac Causes

- Hypertensive heart disease
- Ischemic heart disease
- Valvular heart disease
 - Rheumatic: mitral stenosis
 - Non-rheumatic: aortic stenosis, mitral regurgitation
- Pericarditis
- Cardiac tumors: atrial myxoma
- Sick sinus syndrome
- Cardiomyopathy
 - Hypertrophic
 - Idiopathic dilated (? cause vs. effect)
- Post-coronary bypass surgery

Non-Gardiac Causes

- Pulmonary
 - COPD
 - Pneumonia
 - Pulmonary embolism
- Metabolic
 - Thyroid disease: hyperthyroidism
 - Electrolyte disorder
 - Toxic: alcohol ('holiday heart'

syndrome)

Isolated AF ("Lone AF") in the world

Prevalence

Euro Heart Suvey 2008	10%
Framingham 1985	8%
CHS 1994	11%
Kopeky 1987	3%
Olmsted County 2010	2%
ATA-AF	2%

AF

Parossistica Persistente Long-lasting Permanente

Elettrica Anatomo-elettrica Anatomica

The vicious circle of AF

Electrophysiological changes Atrial ADP ↓ Atrial ERP ↓ **Antiarrhythmic drugs** Ion channel alterations ATRIAL FIBRILLATION Remodeling Structural changes Fibrosis **ACEI, ARBS and Statins** Dilatation Myolysis Atrial contractility ↓

Inflammation

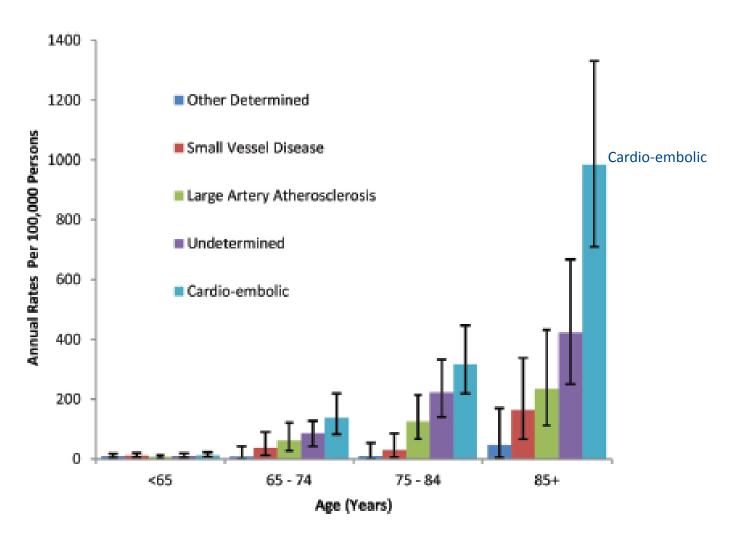
Stroke is the leading complication of AF

Without prevention (anticoagulation)
5%; 1 in 20 patients
will have a stroke each year

Adelaide Stroke Incidence Study: Declining Stroke Rates but Many Preventable Cardioembolic Strokes

James M. Leyden, Timothy J. Kleinig, Jonathan Newbury, Sally Castle, Jennifer Cranefield, Craig S. Anderson, Maria Crotty, Deirdre Whitford, Jim Jannes, Andrew Lee and Jennene Greenhill

Stroke. 2013;44:1226-1231; originally published online March 12, 2013;


Stroke is the leading complication of AF

4/10 ischemic strokes were cardioembolic (15-30% reported in previous studies).

The trend suggested there was a need for more effective anticoagulation: "We could stop a third of cardioembolic strokes if we could anticoagulate properly".

The study found there were 318 strokes in the 140,000 people studied, of which 258 were ischaemic. 42% of ischaemic strokes were cardioembolic and 36% were caused by AF.

Age-specific incidence rates for all ischemic stroke subtypes in Adelaide (2009-2010)

Cardio-embolic STROKE up to 45% in older age 10% each year

Management of Atrial Fibrillation: ESC and ACC/AHA Guidelines

- Anticoagulation risk stratification
- Use of novel oral anticoagulants
- Pharmacological cardioversion
- Oral antiarrhythmic therapy
- Left atrial catheter ablation

CHA₂DS₂VASc score and stroke rate

a) The risk factor based approach expressed as a point based scoring system, with the acronym CHA ₂ DS ₂ -VASc (Note: maximum score is 9 since age may contribute 0, 1 or 2 points)					
Risk factor	Score				
Congestive heart failure/LV	Congestive heart failure/LV dysfunction				
Hypertension		1			
Age ≥75		2			
Diabetes mellitus	1				
Stroke/TIA/TE	2				
Vascular diseasea		1			
Age 65-74	Age 65-74				
Sex category (i.e., female go	ender)	I			
Maximum score	Maximum score				
b) Adjusted st	roke rate according to C	CHA ₂ DS ₂ -VASc score			
CHA ₂ DS ₂ -VASc score	Patients (n = 73538)	Stroke and thromboembolism event rate at 1 year follow-up (%)			
0	6369	0.78			
T	8203	2.01			
2	12771	3.71			
3	17371	5.92			
4	13887	9.27 10%			
5	8942				
6	4244	19.74 20%			
7	1420	21.50			
8	285	22.38			

donna, >75 anni, Ipertesa: Cioè...tutte

23.64

Antithrombotic therapies in stroke prevention

Warfarin

Relative RR vs. placebo 64% (CI 49–74)

Absolute risk reduction primary 2.7%/yr

Absolute risk reduction secondary 8.4%/yr

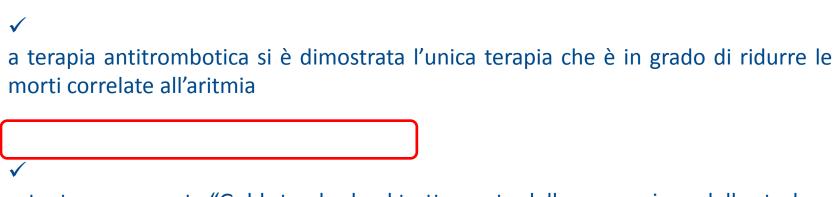
NNT primary prevention 37

NNT secondary prevention 12

ASA

Relative RR vs. placebo 22% (CI -1-35)

Absolute risk reduction primary 0.8%/yr


Absolute risk reduction secondary 2.5%/yr

NNT primary prevention 125

NNT secondary prevention 40

Warfarin vs ASA RR 38% (CI 23-48)

Pregi Degli Inibitori Della Vitamina K

ertanto rappresenta "Gold standard nel trattamento della prevenzione dello stroke e tromboembolismo sistemico"

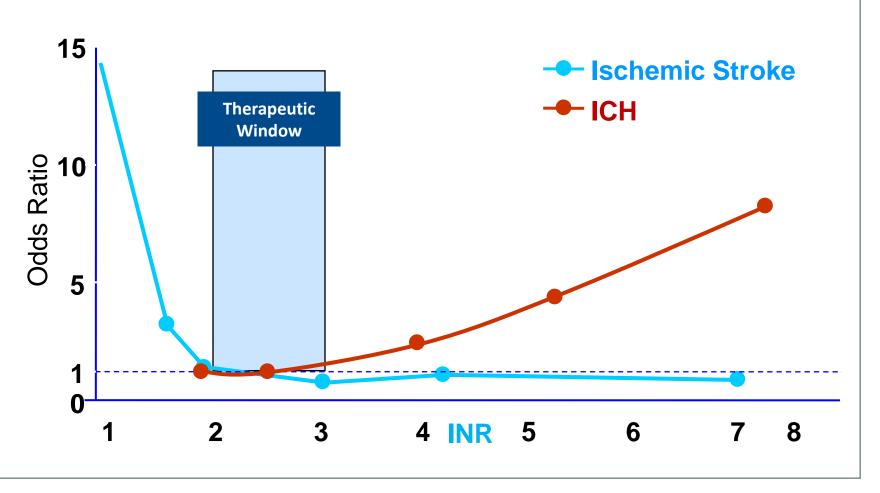
ifatti gli eventi si riducono del 60%

I Limiti Degli Inibitori Della Vitamina K

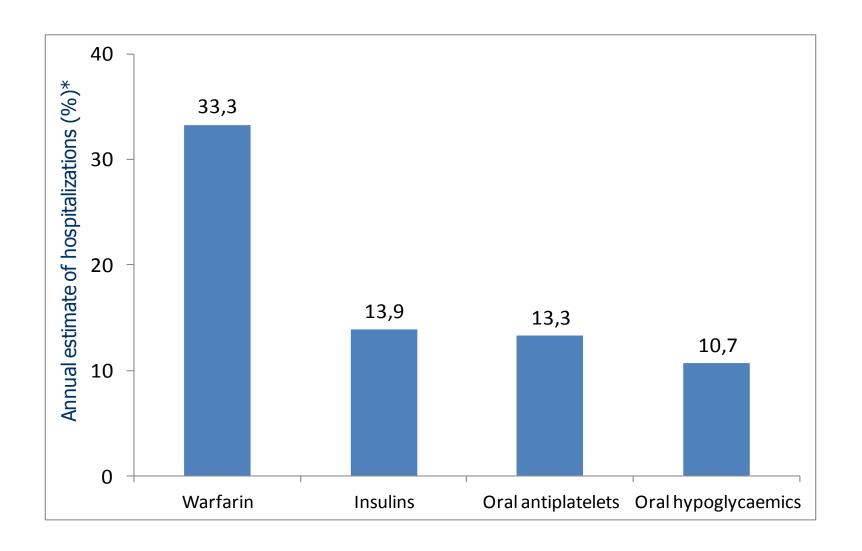
```
tretta finestra terapeutica (range INR 2-3) = frequente monitoraggio
'efficacia e la sicurezza sono legate al Time in Therapeutic Range (TTR)
ariabili importanti sono:

    metabolismo e compliance del paziente

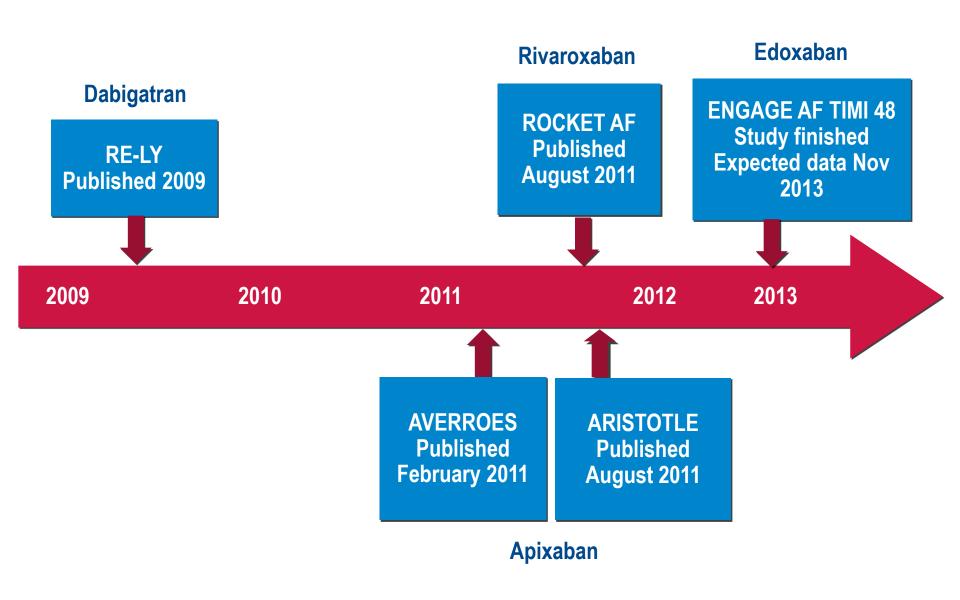
    interazioni con farmaci e alimenti


    qualità del laboratorio

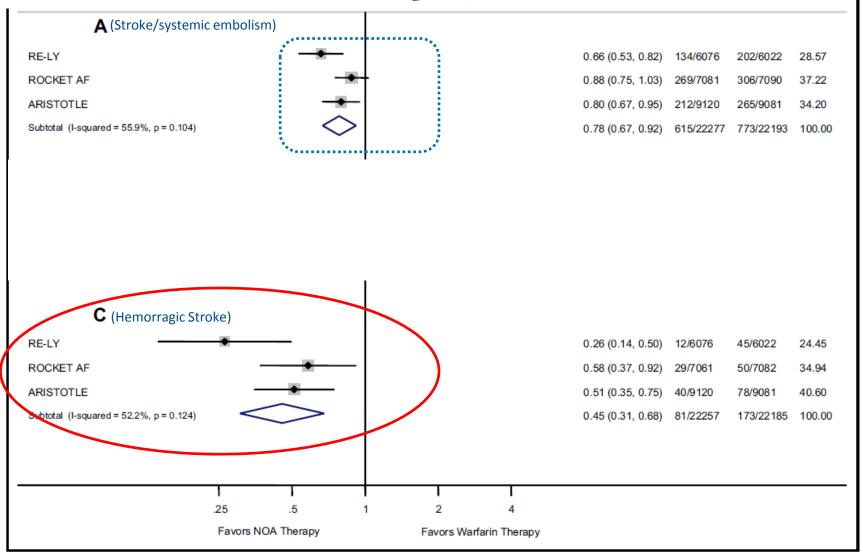
    qualità della prescrizione (curante, centri TAO, self monitoring)


mportante undertreatment (meno della metà in Italia, solo il 60-70% negli USA)
levato rischio di eventi avversi emorragici (ICH)
```

Stretta finestra terapeutica (range INR 2-3) = frequente monitoraggio I Limiti Degli Inibitori Della Vitamina K


Relationship Between Clinical Events and INR Intensity in Patients with AFib

Warfarin implicato in circa un terzo dei ricoveri ospedalieri per: eventi avversi a farmaci



Atrial Fibrillation: new oral anticoagulants (RCT)

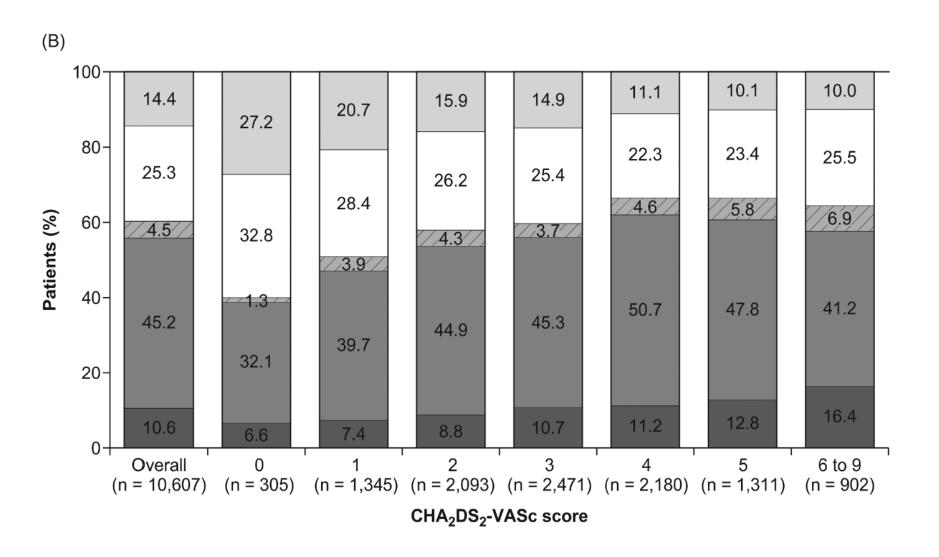
Meta-Analysis of Efficacy and Safety of New Oral Anticoagulants (Dabigatran, Rivaroxaban, Apixaban) Versus Warfarin in Patients With Atrial Fibrillation

Corey S. Miller, BA^{a,c}, Sonia M. Grandi, MSc^a, Avi Shimony, MD^{a,b,d}, Kristian B. Filion, PhD^a, and Mark J. Eisenberg, MD, MPH^{a,b,c,*}

Age-based lack of prescribing Warfarin

Predittori di mancata prescrizione di VKA:

•Sesso femminile


•Ricovero in Medicina

•Età

•Deficit cognitivo

Use of antithrombotic therapies, overall and according to CHA₂DS₂-VASc score in the Garfield registry

Rischio emorragico – HAS-BLED

HAS-BLED risk criteria	Score
H ypertension	1
Abnormal renal or liver function (1 point each)	1 or 2
S troke	1
Bleeding	1
Labile INRs	1
Elderly (e.g. age >65 yrs)	1
Drugs or alcohol (1 point each)	1 or 2

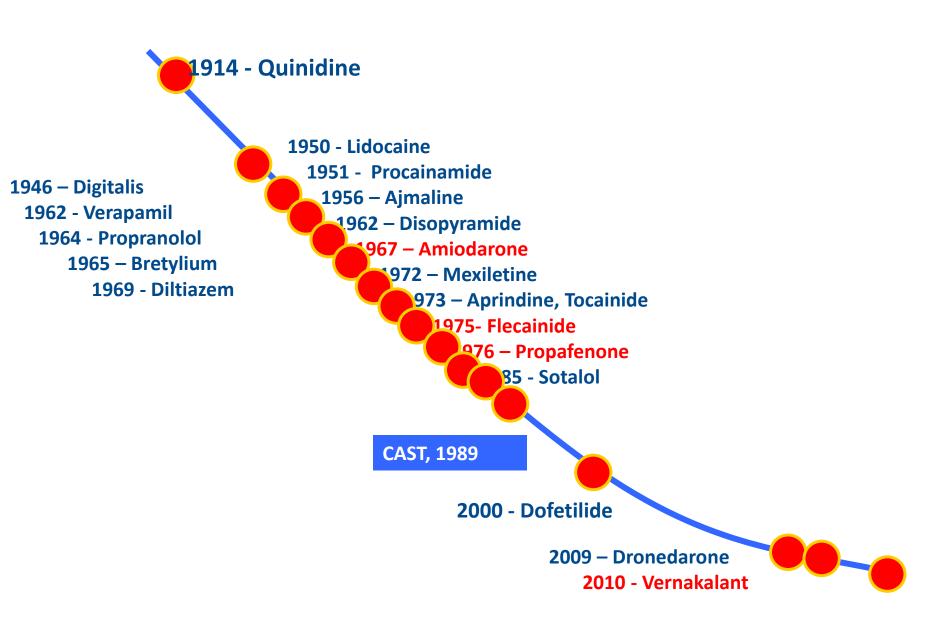
HAS-BLED total score	N	Number of bleeds	
0	798	9	1.13
1	1286	13	1.02
2	744	14	1.88
3	187	7	3.74
4	46	4	8.70
5	8	1	12.5
6	2	0	0.0
7	0	_	-
8	0	-	-
9	0	_	_

70% of the cost of AF management is driven by inpatient care and interventions.

EUROHEART SURVEY (2004-2005)

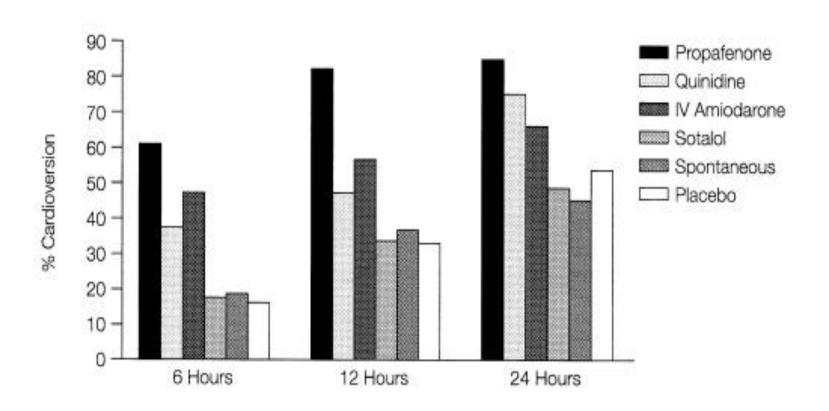
Work loss
 Consultations
 Inpatient care
 Interventions
 Drugs

Diagnostics


80% - 60% - 40% - 20% - Greece Italy Poland Spain Netherlands

Association between clinical variables and admission

(n=3475, AOUC, Florence Italy)


	Univariate Analysis			Multivariate Analysis		
	OR	Confidence interval 95%	р	OR	Confidence interval 95%	p
Lack of rhythm control	9.837	8.409-11.592	<0.001	8.653	7 .34 7-1 0.197	<0.001
Diabetes mellitus	2.421	2.102-2.789	<0.001	1.864	1.581-2.197	< 0.001
Comorbidities	2.156	1.692-2.749	<0.001	1.700	1.277-2.263	< 0.001
Age	1.034	1.028-1.041	< 0.001	1.016	1.009-1.023	< 0.001
Hypertension	0.987	0.860-1.134	NS	-	-	-
Male gender	0.930	0.810-1.068	NS	-	-	-

History of Antiarrhythmic Drugs

Treatment of recent-onset AF: comparative efficacy

The evidence

Pooled efficacy rates for short-duration AF patients with cardioversion success at 2 hours and 8-24 hours by treatment

Treatment	Cardioversion	Cardioversion		
	at 2 hours	within 8-24 hours		
Vernakalant-iv	52%	_		
Amiodarone-oral	9%	87%		
Amiodarone-iv	16%	61%		
Flecainide-oral	68%	81%		
Flecainide-iv	64%	70%		
Propafenone-oral	21%	79%		
Propafenone-iv	51%	82%		
Sotalol-iv	12%	48%		
Placebo-iv	12%	48%		

References, country	N centers/ N patients*	AF population	Study design/ level of evidence	Treatment studied	SR conversion rate/time to conversion	Rate of discharge/ length of stay	Recurrences and readmissions	Adverse events / embolic complications	Main limitations
Cristoni et al. [23], Italy	2/322	Stable AF < 48 h High risk of embolism and acute clinical conditions excluded	Prospective, controlled, not randomized IV	DCC vs. PhC (DCC cohort: PhC was attempted first if AF duration <6h)	cohort (93 vs. 51%, P<0.001)	Similar LS Rate of discharge higher DCC cohort (94 vs. 56%, P<0.001)			drugs used in the PhC cohort Indirect follow- up Results in the
Hirschl et al. [28], Austria	1/376	Stable AF<48h ICC, stroke, or SCA excluded	Prospective, controlled, not randomized IV	Recainide vs. magnesium vs. ibutilide vs. amiodarone vs. digoxin vs. diltiazem vs. digoxin + diltiazem	option:			cower AE with digoxin and higher with amiodarone (1 vs. 6%, P=NS)	Small number of enrolled patients in each group
Bellone et al. [24], Italy	1/247	Stable AF <48h >75 years, him		ropafeno	Primary resolution: Option: AADS Flecainide Ne or Flecainide Ne or rate higher with DCC 3 vs. 73.8%, P=0.02)	Shorter LS with DCC (180 min vs. 420 min, P< 0.001)	Similar rate of recurrence (26.3-28.2%) at 2 months	Similar low rate of AE (4.8% in propatenone group vs. 0.8% in DCC group,	
Vinson et al. [25], USA	3/1		not randomized IV	spontaneous cardioversion vs. DCC or PhC attempted vs. home observation 48 h ('wait-and-see' approach) vs. cardioversion contrain dicated	SR conversion: higher with DCC as a			P=NS) Low rate of AE (2.9-2.6% in DCC group), all resolved in the ED Two EC at 30 days (one in PhC, one in cardioversion contraindicated	Different size of groups Some results are not differentiated by AF/flutter
Conti <i>et al.</i> [29], Italy	1/341	Stable AF<48 h NYHA>II or complications excluded	Prospective, controlled, not randomized IV	IV flecainide vs. IV propafenone vs. IV amiodarone	SR conversion rate at 6h higher with flecainide (72.1%) and propafenone (54.5%) vs. amiodarone (29.7%, P<0.001) Overall SR conversion at 24 h high	Shorter LS with flecainide (8.9 h) and propafenone (11 h) vs. amiodarone		Similar rate of AE (1.7%), one requiring DCC (propate none)	Not randomized Different size of groups
Chu <i>et al.</i> [33], Australia	1/48	Stable AF < 48 h and rate >100 bpm Wide QRS, hypotension, pulmonary edema, and MI excluded	Prospective, randomized (small sample),	Magnesium sulfate vs. placebo	and similar in all groups (overall 87%) Time to conversion shorter with flecainide (178 min) and propafenone (292 min) vs. amiodarone (472 min, P< 0.001) No differences in heart rate control or in SR conversion	(20.1 h, P= 0.001)			Convenience sample Basal differences between

TREATMENT STRATEGY IN THE ED

AF ≤ 48 hours

eligible

Rhythm-control

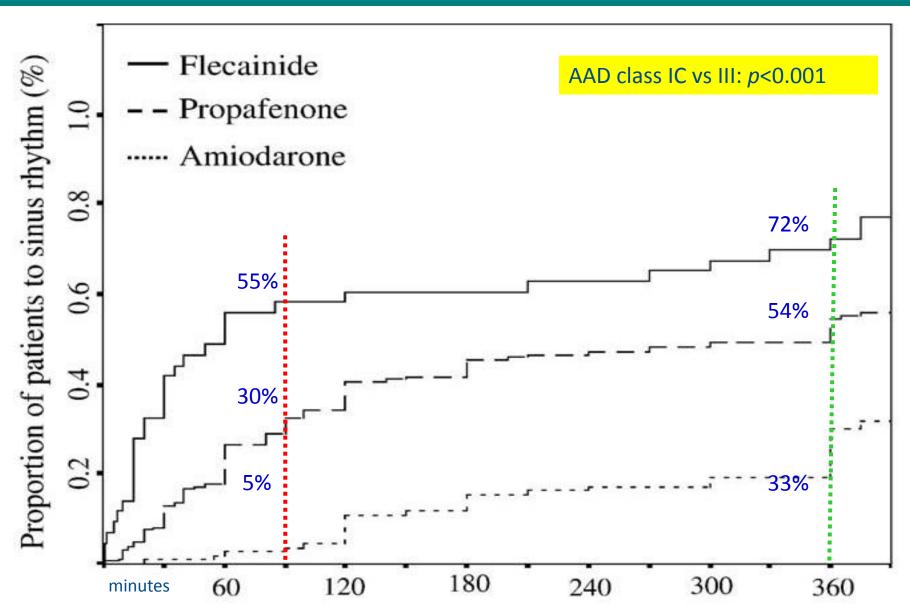
IV bolus

Flecainide (2 mg/Kg) or Propafenone (2 mg/Kg) or Amiodarone (5 mg/Kg)

...consider DC Shock

AF >48 hours

eligible



Rate-control

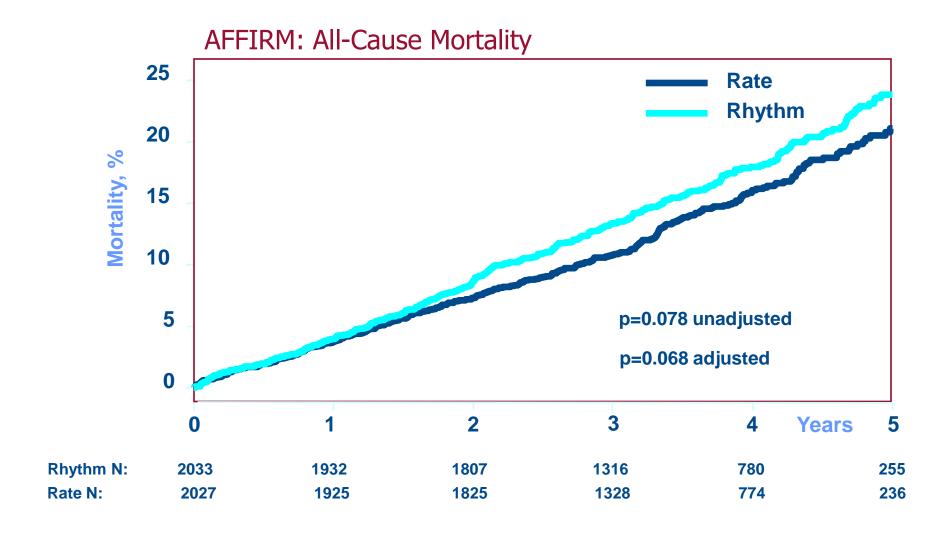
...eventually DC Shock

Time course to sinus rhythm by treatment within the firstline 6-hour approach (n = 341, AOUC, Florence Italy)

Pill-in-the-Pocket

- In a selected (no or mild HD), risk-stratified patient population with recurrent AFib not currently taking AADs
 - Acute oral flecainide or propafenone successfully terminated 94% of episodes within 113 \pm 84 min, with side effects in 7% of patients

Always in your mind...DC shock



AF Rate vs. Rhythm Control Trials: Implications

- AFFIRM has demonstrated that rate control is an acceptable primary therapy in a selected high-risk subgroup of AF patients
- Continuous anticoagulation seems warranted in all patients with risk factors for stroke

AFFIRM:

5-year, randomized. Primary endpoint: overall mortality. **4.060 pts** with AF and risk factors for stroke. Mean Age = 69 yo Hx of hypertension: 70.8% CAD: 38.2% Enlarged LA: 64.7% Depressed EF: 26.0%

Is it important to treat rhythm?

May we treat rhythm?

a

But:

Bias in the selection of patients?

- Questions remained
- All the studies enrolled only patients for whom <u>Rhythm Control</u> considered to be an option by both the patient and the physician

Implications of Trials: Guideline Statement

- •Theoretically, rhythm control should have advantages over rate control, yet a trend toward lower mortality was observed in the rate-control arm of the AFFIRM study and did not differ in the other trials from the outcome with the rhythm control strategy. This might suggest that attempts to restore sinus rhythm with presently available antiarrhythmic drugs are obsolete.
- •The RACE and AFFIRM trials did not address AF in younger, symptomatic patients with little underlying heart disease, in whom restoration of sinus rhythm by cardioversion antiarrhythmic drugs or non-pharmacological interventions still must be considered a useful therapeutic approach.
- One may conclude from these studies that rate control is a reasonable strategy in elderly patients with minimal symptoms related to AF. An effective method for maintaining sinus rhythm with fewer side effects would address a presently unmet need.

But:

b

Hemodinamic consequences of AF

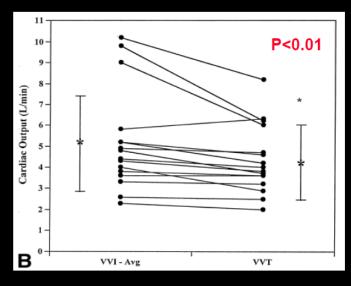
- -Loss of atrial kick
- -Elevated HR
- -No HR adaptation
- -Irregularity

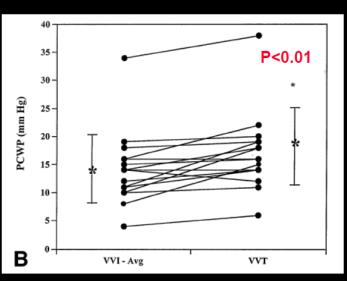
Hemodynamic consequences of AF

Hemodynamic Effects of an Irregular Sequence of Ventricular Cycle Lengths During Atrial Fibrillation

DAVID M. CLARK, MD, VANCE J. PLUMB, MD, FACC, ANDREW E. EPSTEIN, MD, FACC,

G. NEAL KAY, MD,

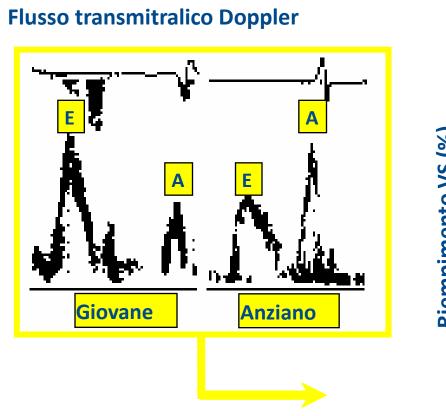

Birmingham, Alabama

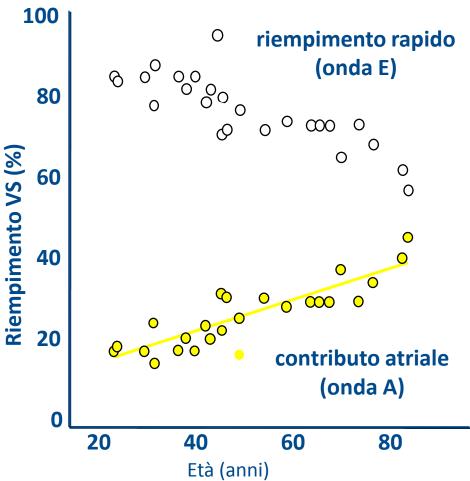

Objectives. The aim of thi dent hemodynamic effects of cycle lengths in patients with

Background. Atrial fibril several possible mechanism bution to left ventricular fill ventricular rate or irregula signed to evaluate the effect pendent of the average ventre data during AF.

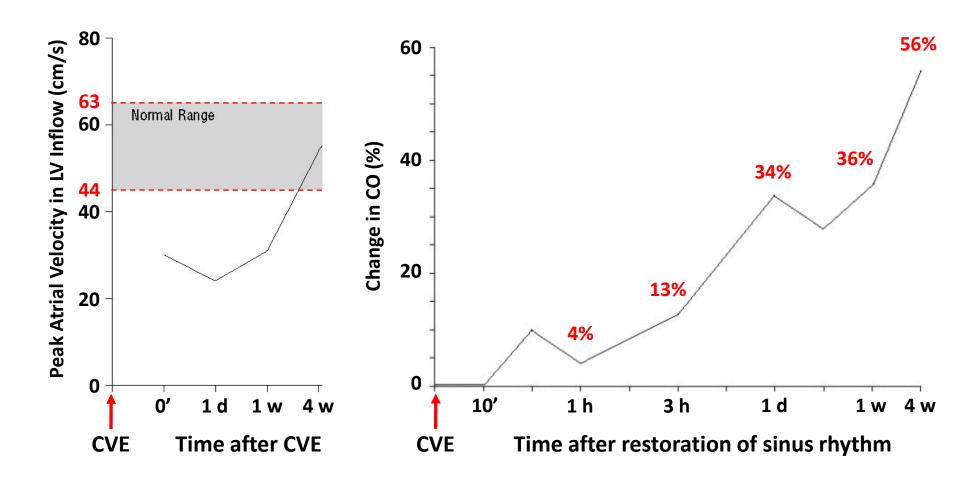
Methods. Sixteen patien During intrinsically conduct min), the right ventricular frequency-modulated (FM) lation, the right ventricular modes in randomized seque

Hemodynamic consequences of AF Regular versus irregular VVI pacing





CO decrease 0.8 I/min


PCWP increase 3 mmHg

Age-associated changes in left ventricular filling pattern in normal subjects

b

Sinus rhythm is associated with fewer heart failure symptoms: Insights from the AFFIRM trial

Maya Guglin, MD, PhD, FACC, Ren Chen, MD, MPH, Anne B. Curtis, MD, FHRS

From the University of South Florida, Tampa, Florida.

BACKGROUND The AF efit from a rhythm con atrial fibrillation (AF) morbidity and mortali rhythm, which is more strategy.

OBJECTIVE This study toms in the different tigation of Rhythm M prevalence of AF or sin

METHODS This study AFFIRM trial, provided Institute.

RESULTS Symptomati than in the rhythm rhythm, New York Hear in patients who were

NYHA status and CVEs in rhytm control vs rate control

(intention to treat)

		NYHA (0 + I)		NYHA (II + III)	
Arm	N of records	N of records	%	N of records	%
Rate control Rhythm control	20,672 20,843	18,754 19,087	90.7 91.6	1,905 1,746	9.2 8.4*

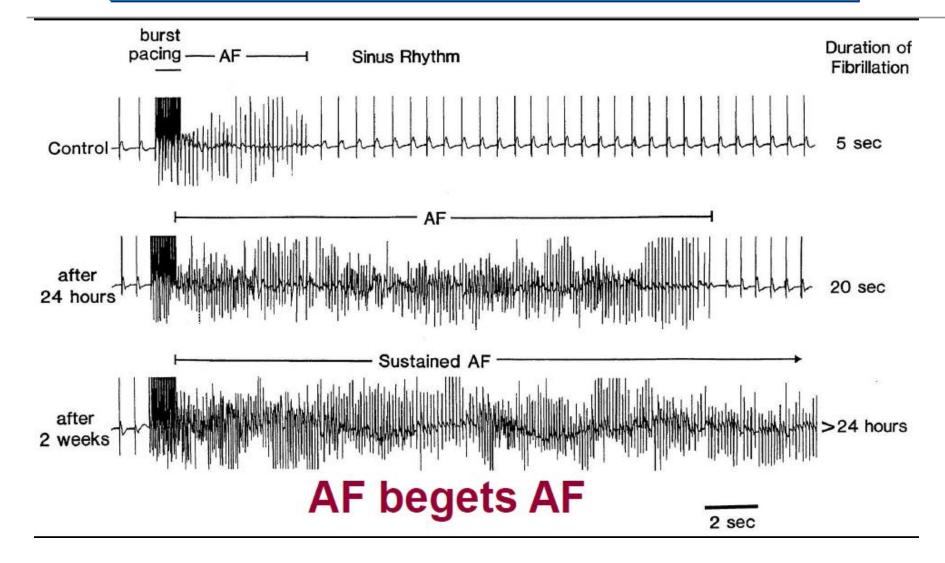
ate

HF

hm

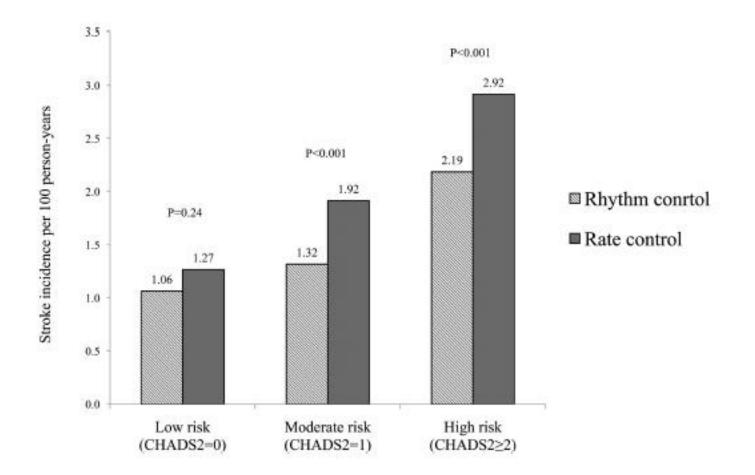
are

hal ay


Atrial Fibrillation and Tachycardia Induced Cardiomyopathy

C

- Cardiomyopathy can be caused by any tachycardia (>110 bpm) that occurs as little as 10-15% of day
- Maximal improvement after rate control may require up to 8 months
- After improvement susceptibility to rapid deterioration remains if tachycardia recurs



Rhythm Versus Rate Control Therapy and Subsequent Stroke or Transient Ischemic Attack in Patients With Atrial Fibrillation

Meytal Avgil Tsadok, Cynthia A. Jackevicius, Vidal Essebag, Mark J. Eisenberg, Elham Rahme, Karin H. Humphries, Jack V. Tu, Hassan Behlouli and Louise Pilote

Circulation. 2012;126:2680-2687; originally published online November 2, 2012; doi: 10.1161/CIRCULATIONAHA.112.092494

AFFIRM: survival by actual rhythm

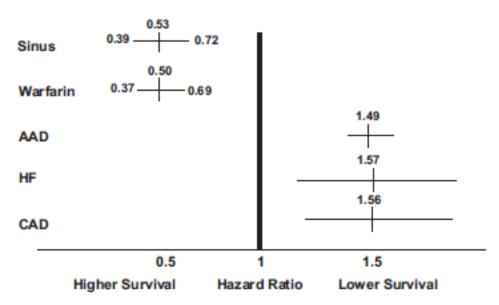
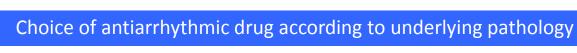
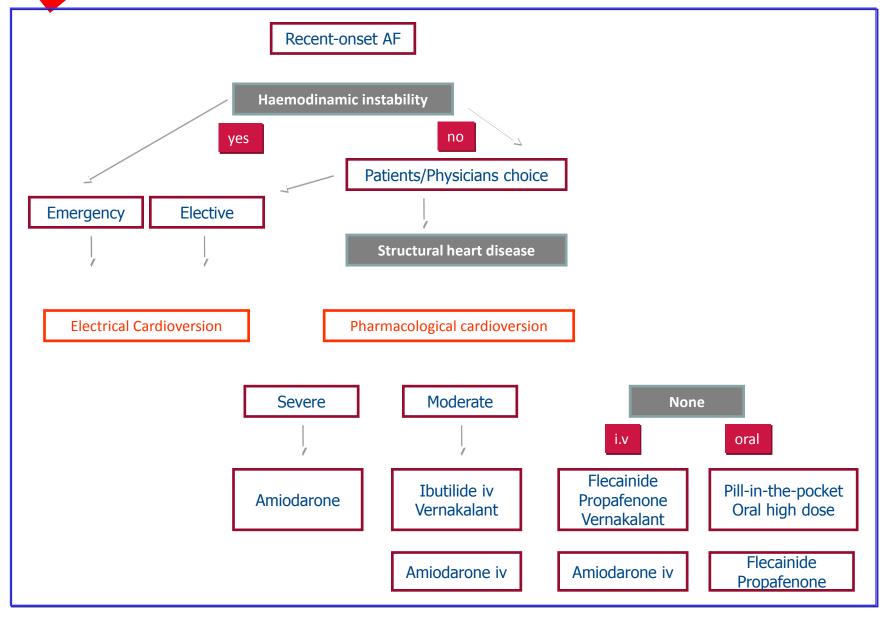
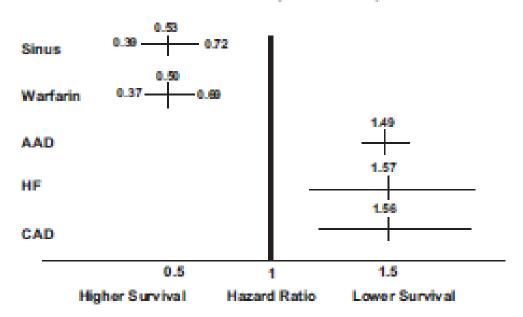




Figure 1. An "on-treatment" analysis of the AFFIRM study allowed for the inclusion of time-dependent variables, such as the presence or absence of sinus rhythm. 49 Multivariable analysis demonstrated that the presence of sinus rhythm is either an important determinant of survival or a marker for other characteristics associated with survival that were not captured in the model. The positive impact of sinus rhythm is essentially equal and opposite of that of AAD therapy. CAD indicates coronary artery disease; HF, heart failure. Reproduced from Corley et al 49 with permission of the publisher. Copyright © 2004, the American Heart Association.

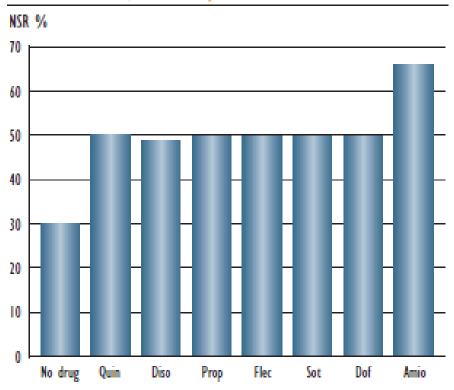


Pharmacological and electrical conversion of atrial fibrillation to sinus rhythm: Is it worth it?

Pharmacological and Electrical Conversion of Atrial Fibrillation to Sinus Rhythm Is Worth the Effort

Elad Anter, MD; David J. Callans, MD

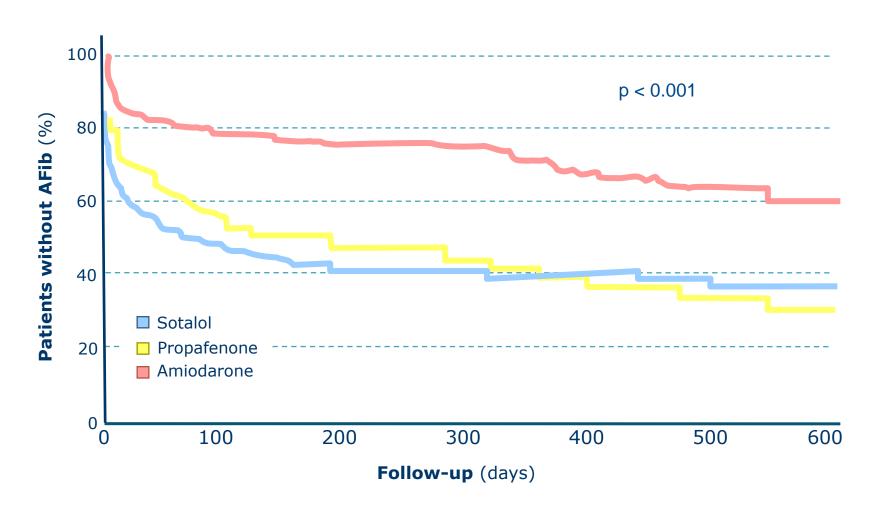
AFFIRM: survival by actual rhythm

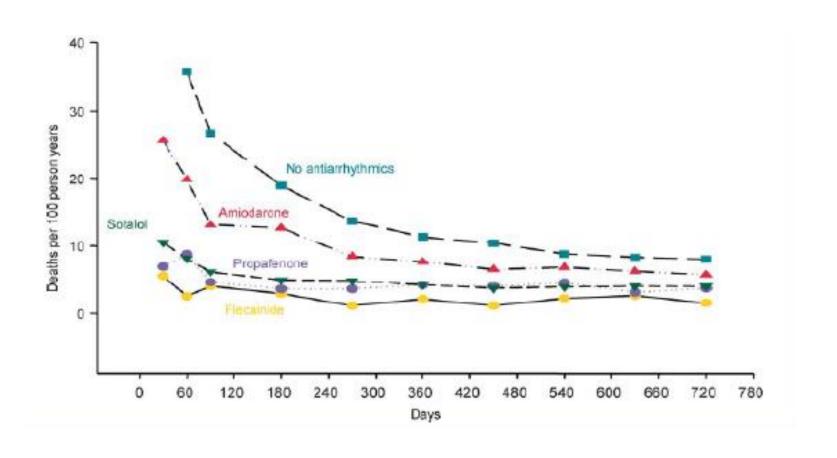


Prevention of AF relapse

Even with the most effective AAD, such as amiodarone, long-term efficacy is low
 ~50% or less at 1 year

Prevention of AF relapse


Available Antiarrhythmic Agents in Treating AF with Maintenance of Sinus Rhythm over a Six-month Period


Quin = quinidine; Diso = disopyramide; Proc = procainamide; Prop = propafenone; Flec = flecainide; Sot = d_i I-sotalol; Amio = amiodarone

Drugs to Prevent Recurrence of AFib

CTAF Study: mean follow-up 16 months

Antiarrhythmic therapy and the risk of death

Treatment Options for AFib

Cardioversion

- Pharmacological
- Electrical

Drugs to prevent AFib

- Antiarrhythmic drugs
- Non-antiarrhythmic drugs

Drugs to control ventricular rate Drugs to reduce thromboembolic risk

Non-pharmacological options

- Electrical devices (implantable pacemaker and defibrillator)
- AV node ablation and pacemaker implantation (ablate & pace)
- Catheter ablation
- Surgery (Maze, mini-Maze)
- Surgical closure left atrial appendage