II° CONGRESSO INTERREGIONALE SIMEU ABRUZZO MOLISE "ITINERARI IN EMERGENZA URGENZA"

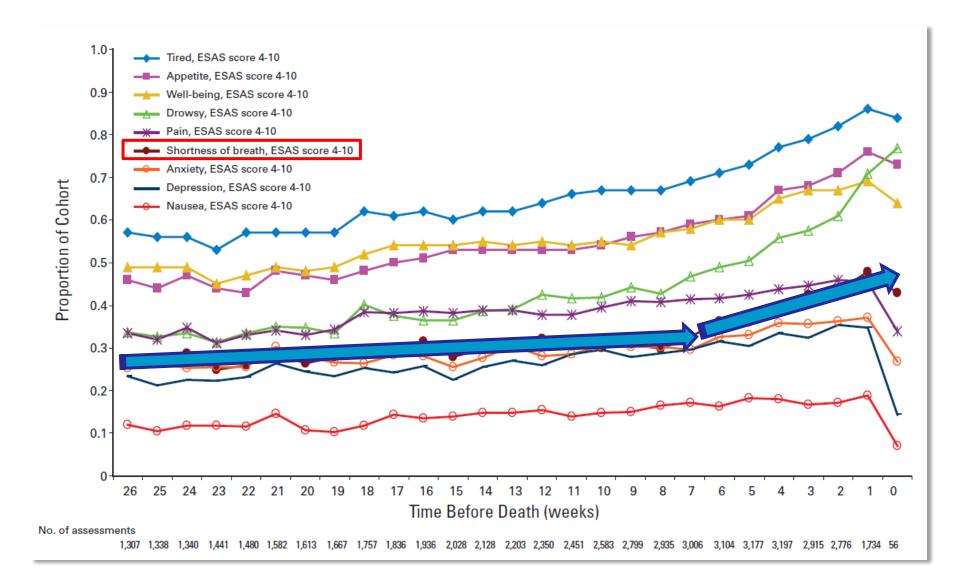
ABRUZZO MOLISE

Gestione della dispnea nell'insufficienza respiratoria end-stage

Salvatore M. Maggiore, MD, PhD

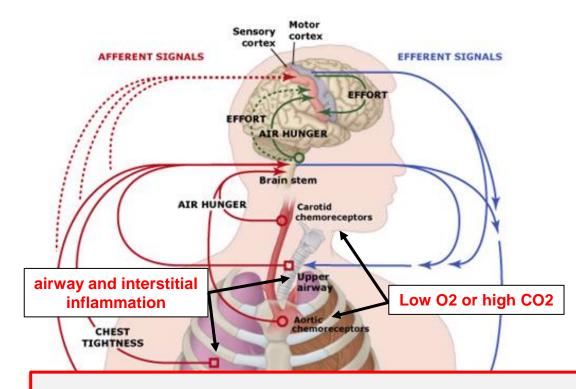
salvatore.maggiore@unich.it

Anesthesia and Intensive Care "SS. Annunziata" Hospital "Gabriele d'Annunzio" University of Chieti-Pescara


Definition of dyspnea

Dyspnea is a term used to characterize a subjective experience of breathing discomfort that consists of qualitatively distinct sensations that vary in intensity. The experience derives from interactions among multiple physiological, psychological, social, and environmental factors, and may induce secondary physiological and behavioral responses.

Prevalence of dyspnea

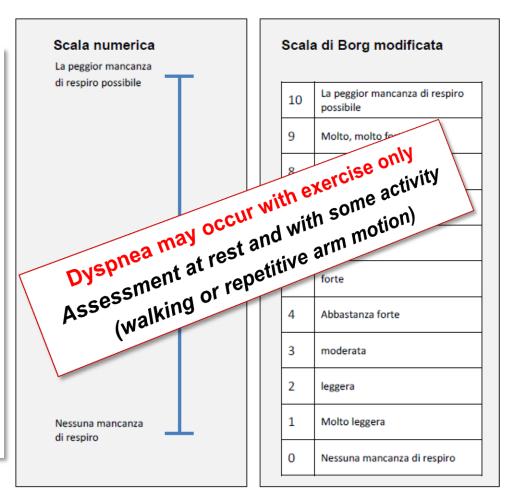

POPULATION	PREVALENCE OF DYSPNEA (%)	REFERENCES
Cancer (mixed)	10-70	Solano 2006
AIDS	10-62	Solano 2006
Lung cancer (primary or metastatic)	62-95	Currow 2010
Heart disease	60-88	Solano 2006
СОРД	90-95	Solano 2006
Renal disease	11-62	Solano 2006
Stroke	37	Addington-Hall 1995
ALS	47-50	O'Brien 1992 , Hicks 1993
Dementia	70	Lloyd-Williams 1996
No cardiorespiratory disease (ie, no primary or secondary lung malignancy, cardiac failure, or respiratory disease)	45-81	Currow 2010

Prevalence & severity increase in the last 6 months

Seow H et al. J Clin Oncol 2011;29:1151-1158

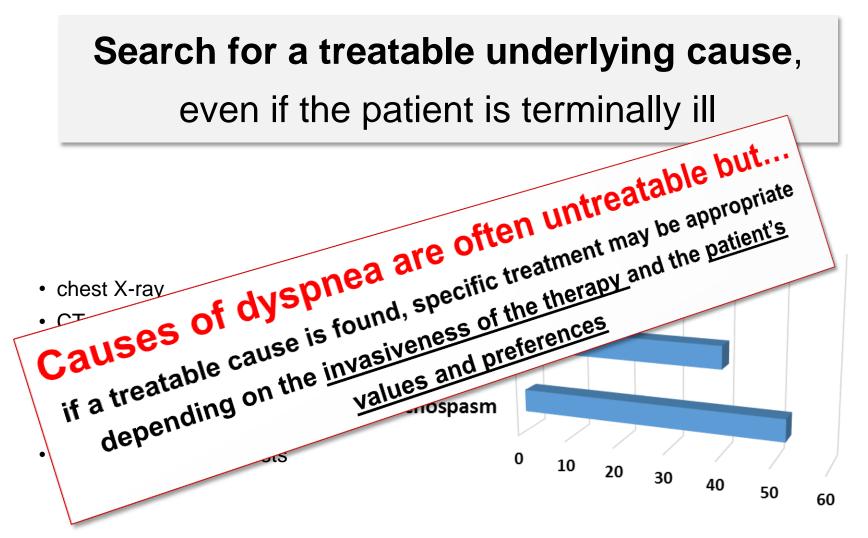
Efferent & afferent signals contributing to dyspnea

Intensity of dyspnea increases when there is a perceived mismatch between the outgoing efferent messages to the ventilatory muscles and incoming afferent signals from the lungs and chest wall


A variety of emotional changes (anxiety, anger, and depression) can intensify dyspnea. The quality and intensity of dyspnea are also thought to be shaped by patient experience, expectation, behavioral style, and emotional state

Assessment of dyspnea

- **Discrepancy** between severity of disease and intensity of dyspnea is frequent.
- **Subjective** symptom: best assessment based on patient report (problematic in unconscious patients).
- Qualitative differences in reporting dyspnea by patients may be related to differences in the underlying cause (<u>asthmatics</u>: "chest tightness";
 <u>COPD</u>: "inability to get a deep breath").


Assessment of dyspnea

- Visual analogue scales are widely used.
- Few scales have been validated across different patient groups and diagnoses (most in COPD or asthma).
- Functional scales that describe the occurrence of dyspnea based on activity are useful:
 - Level 1, no dyspnea
 - <u>Level 2</u>, dyspnea on vigorous exertion (e.g., climbing stairs)
 - <u>Level 3</u>, dyspnea with routine ambulation

- Assess the role of <u>cultural and psychological factors</u> (fear and anxiety of choking, of dying alone by suffocation, or of abandonment, etc.)
- Assess <u>anxiety of family</u> (can contribute to the patient's dyspnea)

Treatable causes of dyspnea

Dudgeon DJ et al. J Pain Symptom Manage 1998;16:212

Treatment of dyspnea

Ultimate goal: to reduce the distress the symptom causes

Non-pharmacologic management

- General measures
- Oxygen
- NIV

Pharmacologic management

- Opioids, benzodiazepines, etc.
- Opioids, benzodiazepines, etc.
- Pharmacologic management

General measures for the management of dyspnea

- Exercise training (lower- or upper-limb endurance training, neuroelectrical muscle stimulation) •
- Breathing techniques (pursed-lips breathing, diaphragmatic breathing) .
- Maximize nutrition •
- ٠
- •

Diminish perception of symptom

- ٠
- •

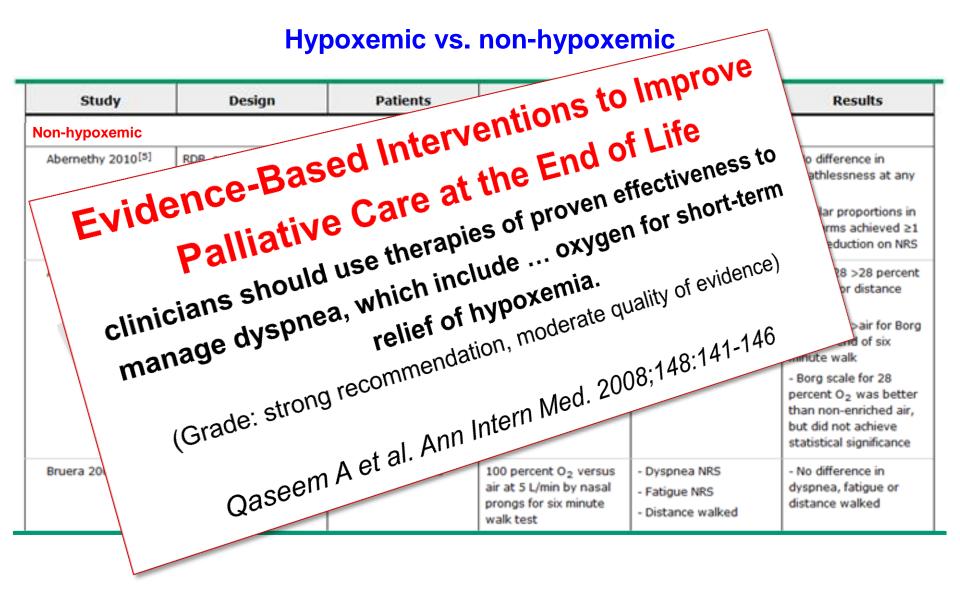
Reduce the in

rapy, acupuncture, music)

Ing arrangement, altered activities, frequent rests)

- Nultidisciplinary approach Nultidisciplinary approach environmentary approach show minter diation of neuropalanter and chamainer and PC pnysicians, nurses, privsivieraus, and chaplains and PC pnysicians, nurses, psychologists, and chaplains therapists, dieticians, etcent: Mod
- Add Int's interpretation of symptom meaning
- If present, treat associated mood/anxiety disorder

Mechanisms by which O2 may reduce dyspnea


- Reversal of hypoxemia
- Reduced serum lactic acid
- Reduced pulmonary artery pressure
- Reduced dynamic hyperinflation
- Reduced ventilatory muscle and diaphragm fatigue
- Relief of bronchoconstriction
- Stimulation of facial, nasal or pharyngeal receptors
- Increased capacity for exercise training
- Placebo effect

Hypoxemic vs. non-hypoxemic

Study	Design	Patients	Intervention	Measurement	Results
Hypoxemic					
Bruera 1992 ^[1]	RDB, crossover	n = 1, six trials of O ₂ versus air	5 L/min O ₂ versus 5 L/min air for five mins	- VAS	- Significant improvement in VAS of O ₂ over air. Both patient and investigator chose O ₂ over air in five of six cases.
Bruera 1993 ^[2]	n = 14, inpatients	100 percent O ₂ versus air at 5 L/min by nasal prongs at rest till SaO ₂ stable for five min	- VAS - Degree of benefit (Likert scale) - Patient preference	- Significant improvement from baseline in VAS dyspnea scores with O ₂ , but not with air	
				- 12 of 14 patients prefer O ₂ ; 12 of 14 patients rate degree of benefit with O ₂ as moderate or greater	

Hypoxemic vs. non-hypoxemic

Study	Design	Patients	Intervention	Measurement	Results
Combined hypoxen	nic and non-hypoxemi	c			
Booth 1996[3]	Randomized, single- blind, crossover	n = 45, inpatients, baseline SaO ₂ range 80 to 9° percent	100 percent O ₂ versus air at 4 L/min by nasal prongs for 15 min at rest	- VAS	 Both O₂ and air resulted in significant improvement from baseline, no statistical difference in magnitude of improvement between groups Neither baseline oxygen saturation (SpO₂), lung disease nor cardiac status predicted greater improvement with O₂
Philip 1	RDB, crossover	n = 51, inpatients and outpatients, baseline SaO ₂ range 70 to 98 percent	100 percent O ₂ versus air at 4 L/min for 15 min, then crossover to alternative	- Patient preference - VAS	 No patient preference for oxygen No difference in change in dyspnea VAS No correlation between O₂ saturation and VAS score

NIV for the management of dyspnea

(a). Obstruction

Chronic obstructive pulmonary

NIV can be used with the intent of:

- 1) reducing the work of breathing,
- 2) easing dyspnea,
- 3) helping to maintain wakefulness by reducing the amount of opioids needed to maintain comfort,
- 4) prolonging life to meet a patient's short-term goals (eg, allowing time for the family to visit) while providing for a comfortable death,
- 5) managing an episode of acute, reversible respiratory failure (occasionally)

Gifford AH et al. Curr Opin Support Palliat Care 2014; 8:218-224

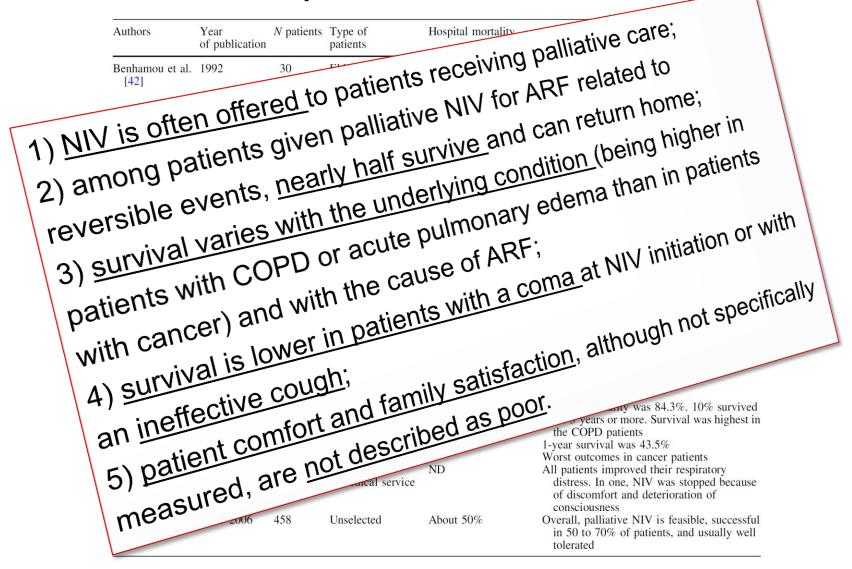
NIV for the management of dyspnea

Dyspnea related to a reversible factor

(e.g., pulmonary edema, infection, or drug overdose)

• NIV evaluated in association with interventions that target the cause (e.g., diuretics, antibiotics, antidotes, or physical therapy)

Terminal dyspnea


(carcinomatous lymphangitis, nerve compression, amyotrophic lateral sclerosis, or other advanced degenerative neuromuscular diseases)

NIV controversial

(futile care or a tool for improving patient comfort?)

Studies on palliative NIV

10 studies, 458 patients with decisions to forego ETI

Azoulay E et al. Intensive Care Med 2011; 37:1250–1257

Palliative NIV for management of dyspnea at the End-of-Life

Palliative use of non-invasive ventilation in end-of-life patients with solid tumours: a randomised feasibility trial

mei

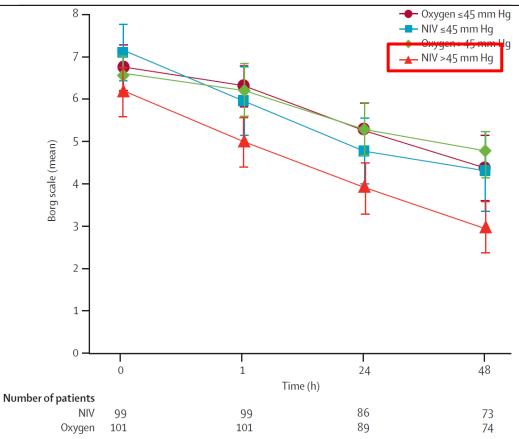
We

lecr

ited

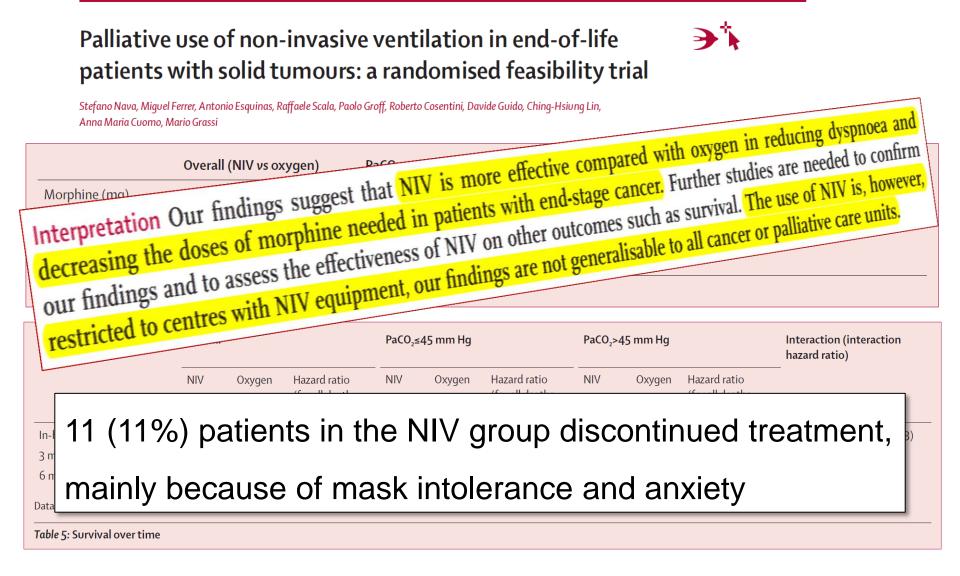
nd

ssu


res erca €

Stefano Nava, Miguel Ferrer, Antonio Esquinas, Raffaele Scala, Paolo Groff, Roberto Cosentini, Davide Guido, Ching-Hsiung Lin, Anna Maria Cuomo, Mario Grassi

200 patients (7 centres) with solid tumours and ARF and a life expectancy < 6 months: 99 NIV vs. 101 oxygen

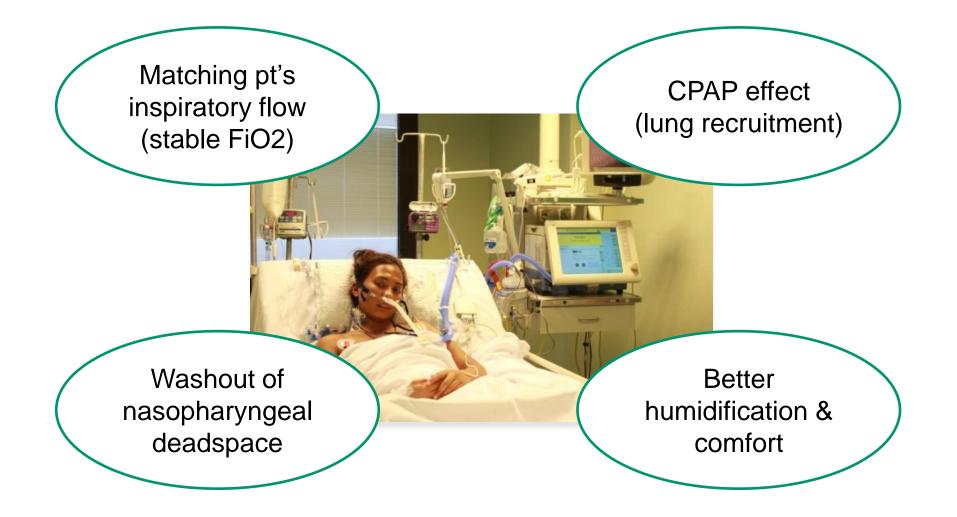

and assigned treatment allocation using opaque, sealed e subcutaneous morphine to reduce their dyspnoea score endpoints were to assess the acceptability of NIV used sole reducing dyspnoea and the amount of opiates needed comp to treat. This study is registered with ClinicalTrials.gov, nu

Findings We recruited patients between Jan 15, 2008, and N randomly allocated 200 (85%) to treatment: 99 to NIV and 101 treatment; no patients in the oxygen group discontinued treat compared with the oxygen group (average change in Borg st benefit seen after the first hour of treatment and in hypercapt was lower in the NIV group than it was in the oxygen group (2) difference –32.4 mg, 95% CI –47.5 to –17.4). Adverse events intolerance and anxiety. Morphine was suspended because of sudden respiratory arrest (one patient in the NIV group), and

Nava S et al. Lancet Oncol 2013; 14: 219-27

Palliative NIV for management of dyspnea at the End-of-Life

Goals of palliative NIV at the End-of-Life

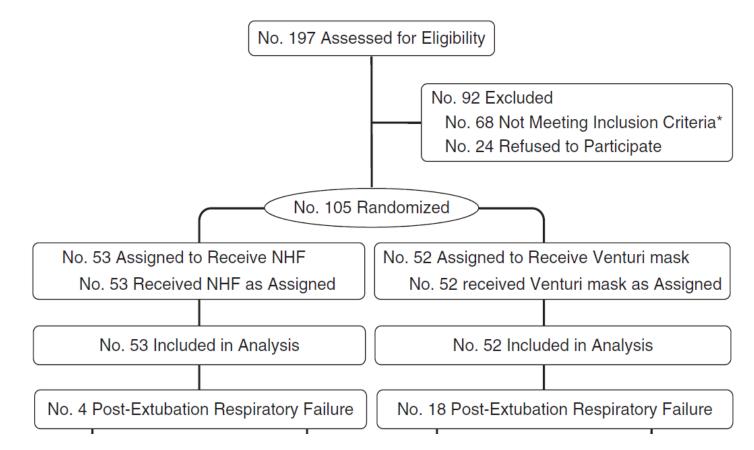

Noninvasive positive pressure ventilation in critical and palliative care settings: Understanding the goals of therapy*

J. Randall Curtis, MD, MPH; Deborah J. Cook, MD; Tasnim Sinuff, MD, PhD; Douglas B. White, MD; Nicholas Hill, MD; Sean P. Keenan, MD, MSc(Epid); Joshua O. Benditt, MD; Robert Kacmarek, PhD, RRT; Karin T. Kirchhoff, RN, PhD, FAAN; Mitchell M. Levy, MD; the Society of Critical Care Medicine Palliative Noninvasive Positive Pressure Ventilation Task Force

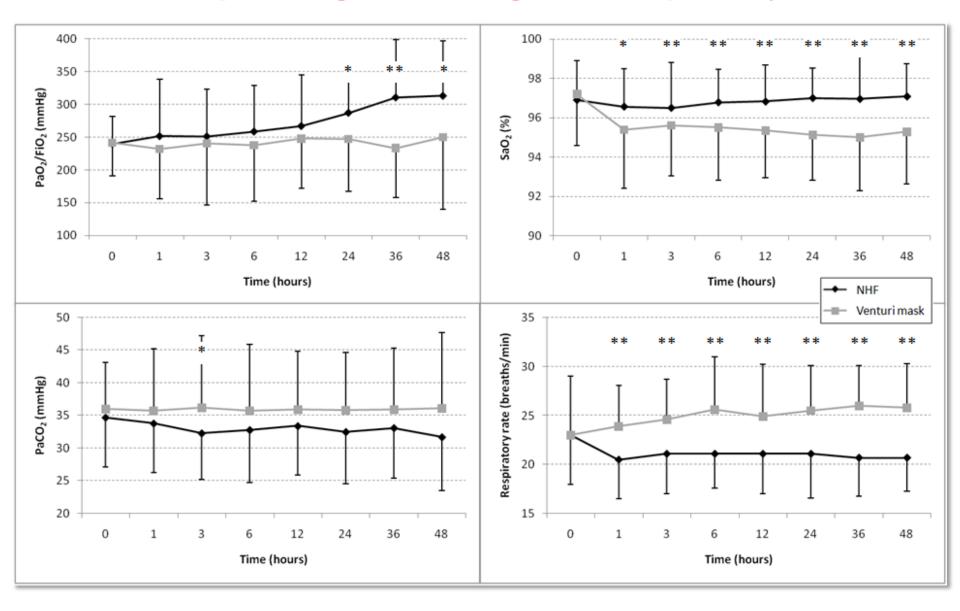
Primary goals of care	Determination of success	Response to failure	What is said to the family		
Category 1: life support without preset limits					
Assist ventilation and/or oxygenation Alleviate dyspnea	Improved oxygenation and/or ventilation	Intubation and mechanical ventilation	Goals are to restore health and use intubation if necessary and indicated		
Achieve comfort	Tolerance of NPPV or minor				
Reduce risk of intubation	discomfort that is				
Reduce risk of mortality	outweighed by potential				
Avoidance of intubation	benefit				
Category 2: life support with preset	limit (do not intubate)				
Includes same as category 1 except intubation declined	Improved oxygenation and/or ventilation	Change to comfort measures only and	Goal is to restore health without using endotracheal intubation and without		
Also could include briefly prolonging life for a specific purpose (e.g., arrival of family member)	Tolerance of NPPV or minor discomfort that is outweighed by potential benefit	palliate symptoms without NPPV	causing unacceptable discomfort		
Category 3: comfort measures only					
Palliation of symptoms (relief of dyspnea)	Improved symptoms Tolerance of NPPV	Palliate symptoms without NPPV	Goal is to maximize comfort while minimizing adverse effects of opiates		

Randall Curtis J et al. Crit Care Med 2007; 35:932–939

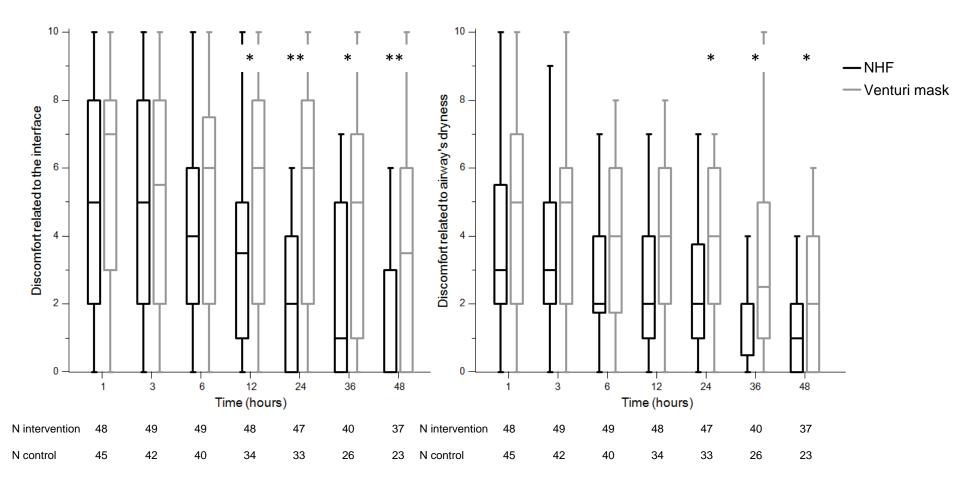
Nasal High-Flow Oxygen Therapy



Efficacy of NHF in hypoxemic patients


Nasal High-Flow versus Venturi Mask Oxygen Therapy after Extubation Effects on Oxygenation, Comfort, and Clinical Outcome

Salvatore Maurizio Maggiore¹, Francesco Antonio Idone¹, Rosanna Vaschetto², Rossano Festa¹, Andrea Cataldo¹, Federica Antonicelli¹, Luca Montini¹, Andrea De Gaetano³, Paolo Navalesi^{4,5,6}, and Massimo Antonelli¹


Maggiore SM et al. AJRCCM 2014;190:282-288

NHF improves gas exchange and respiratory rate

Maggiore SM et al. AJRCCM 2014;190:282-288

NHF improves patient's comfort

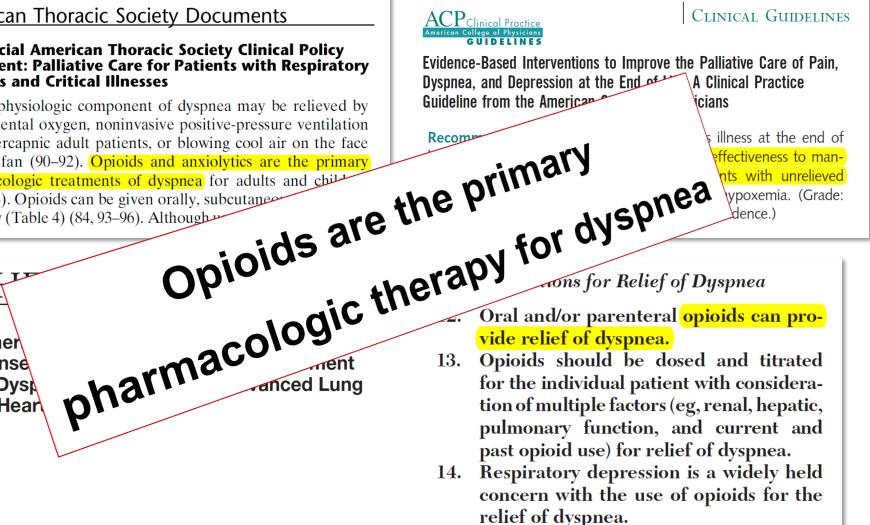
Maggiore SM et al. AJRCCM 2014;190:282-288

Palliative NHF for management of hypoxemic patient

High-Flow Nasal Cannula Therapy in Do-Not-Intubate Patients With Hypoxemic Respiratory Distress

Steve G Peters MD, Steven R Holets RRT, and Peter C Gay MD

	Pre-HFNC	Post-HFNC	Р
Breathing frequency, breaths/min	30.6	24.7	< .001
O ₂ saturation	89.1	94.7	< .001


NHF can provide adequate oxygenation for many patients with hypoxemic ARF and may be an alternative to NIV for DNI pts

American Thoracic Society Documents

An Official American Thoracic Society Clinical Policy Statement: Palliative Care for Patients with Respiratory **Diseases and Critical Illnesses**

The physiologic component of dyspnea may be relieved by supplemental oxygen, noninvasive positive-pressure ventilation for hypercapnic adult patients, or blowing cool air on the face using a fan (90–92). Opioids and anxiolytics are the primary pharmacologic treatments of dyspnea for adults and children which are adults and children which (Table 4). Opioids can be given orally, subcutance venously (Table 4) (84, 93–96). Although

Decreased metabolic rate and ventilatory requirements

Reduced medullary sensitivity to hypercarbia or hypoxia

Blunted medullary response to hypercarbia or hypoxia

Alteration of neurotransmission within medullary respiratory centre

Cortical sedation (suppression of respiratory awareness)

Analgesia - reduction of pain-induced respiratory drive

Anxiolytic effects

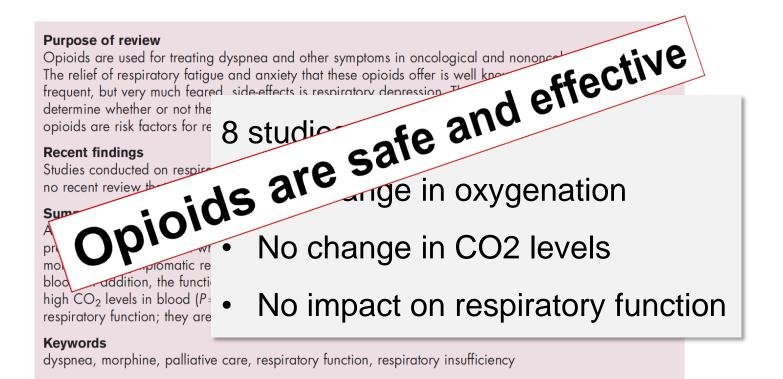
Blunted afferent transmission from pulmonary mechanoreceptor to the CNS

Vasodilation (improved cardiac function)

American Thoracic Society Documents

An Official American Thoracic Society Clinical Policy Statement: Palliative Care for Patients with Respiratory Diseases and Critical Illnesses

Paul N. Lanken, Peter B. Terry, Horace M. DeLisser, Bonnie F. Fahy, John Hansen-Flaschen, John E. Heffner, Mitchell Levy, Richard A. Mularski, Molly L. Osborne, Thomas J. Prendergast, Graeme Rocker, William J. Sibbald[†], Benjamin Wilfond, and James R. Yankaskas, on behalf of the ATS End-of-Life Care Task Force


TABLE 4. STARTING DOSAGES OF OPIOIDS AND THEIR DURATION OF EFFECT IN OPIOID-NAIVE PATIENTS WITH MODERATE TO SEVERE PAIN OR DYSPNEA*

	Adult Duration	Adult	Pediatric	Pediatric	Pediatric	
Agent	IV	Oral	IV	Oral	Oral	
Oxycodone Methadone	N/A 2.5–10 mg	5–10 mg 5–10 mg	N/A 0.1 mg/kg [†]	0.05–0.15 mg/kg [†] 0.1 mg/kg [†]	4–6 h 4–12 h	
Morphine	2–10 mg	5–10 mg	0.1–0.2 mg/kg [†]	0.2–0.5 mg/kg [†]	3–4 h	
Hydromorphone Fentanyl	0.3–1.5 mg 50–100 μg	2–4 mg N/A	0.015–0.03 mg/kg† 1–2 μg/kg†	0.03–0.08 mg/kg† N/A	3–4 h 0.5–1 h	

Lanken PN et al. Am J Respir Crit Care Med 2008; 177: 912–927

Opioids prescription for symptoms relief and the impact on respiratory function: updated evidence

José Mario López-Saca and Carlos Centeno

Lopez-Saca J et al. Curr Opin Support Palliat Care 2014; 8:383–390

Pharmacologic management of dyspnea: Benzodiazepines

Simon ST et al. Cochrane Database Syst Rev 2010; CD007354

Conclusions

- Dyspnea is very frequent during end-stage respiratory failure
- Its assessment is important for delivering optimal palliative care
- Whenever possible (treatable cause), specific treatment should be offered
- Main therapy is pharmacologic (opioids, benzodiazepines), supplemented by other non-pharmacologic maneuvers
- Oxygen should be given in hypoxemic patients. NIV may be useful, particularly in hypercaphic patients.
- New devices for oxygen therapy may prove useful