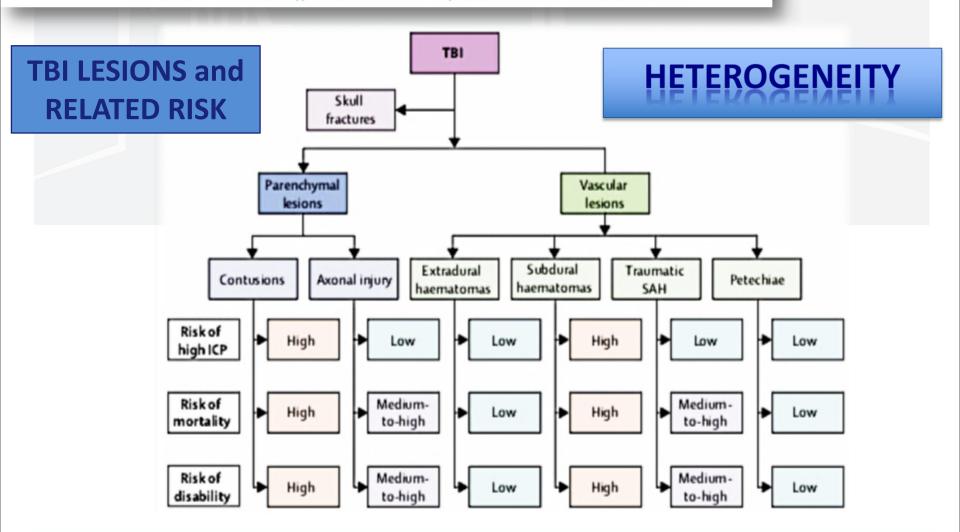
Roma 25 Maggio 2018

L'Ecografia del nervo ottico nel monitoraggio della PIC nel traumatizzato cranico

behind the cotton wool of papilledema

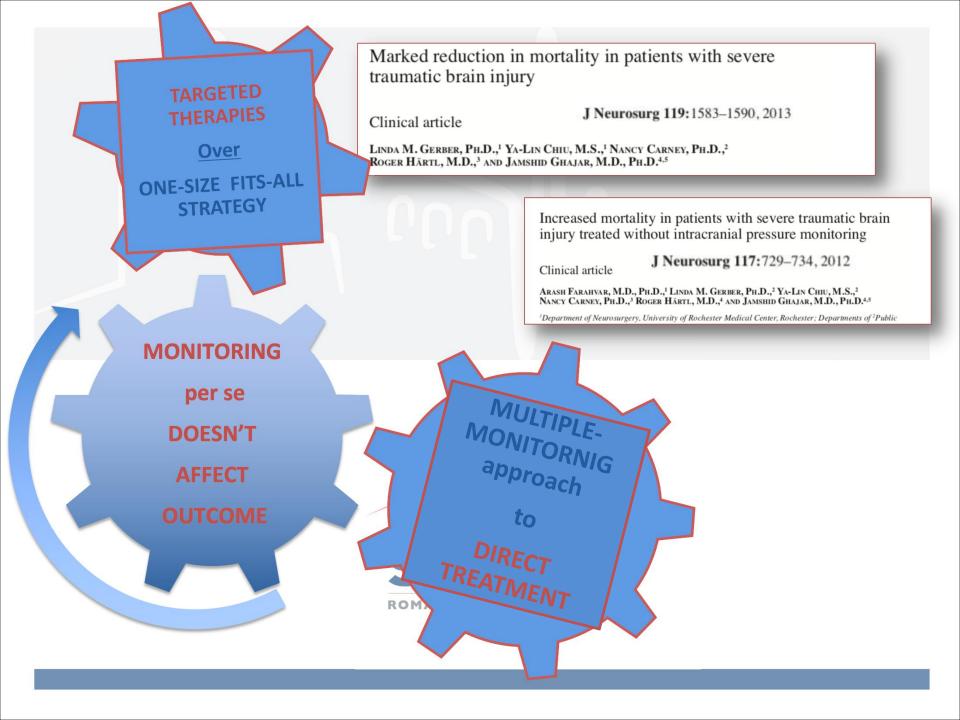
Dott. Elena Casiello


Scuola di Specializzazione in Anestesia Rianimazione Terapia Intensiva e del Dolore Università degli Studi di Foggia, Prof.ssa Gilda Cinnella

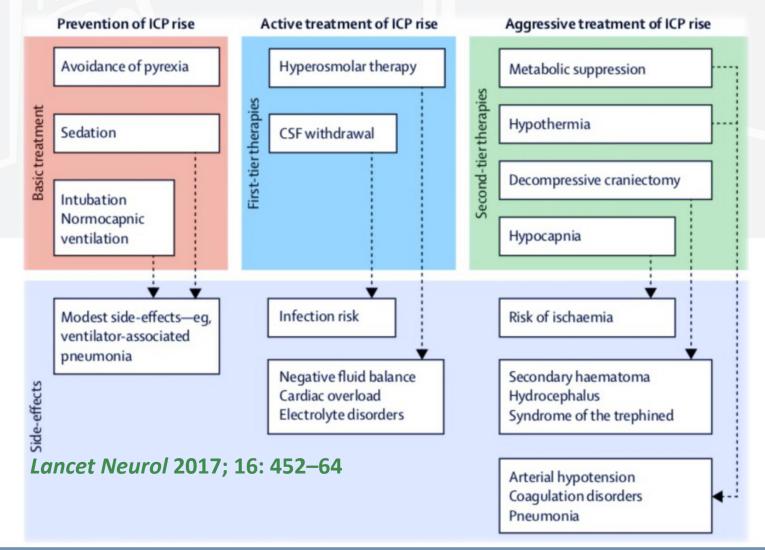
Dott. V. Procacci

Severe traumatic brain injury: targeted management in the intensive care unit

Nino Stocchetti, Marco Carbonara, Giuseppe Citerio, Ari Ercole, Markus B Skrifvars, Peter Smielewski, Tommaso Zoerle, David K Menon


Lancet Neurol 2017; 16: 452-64

IMAGING

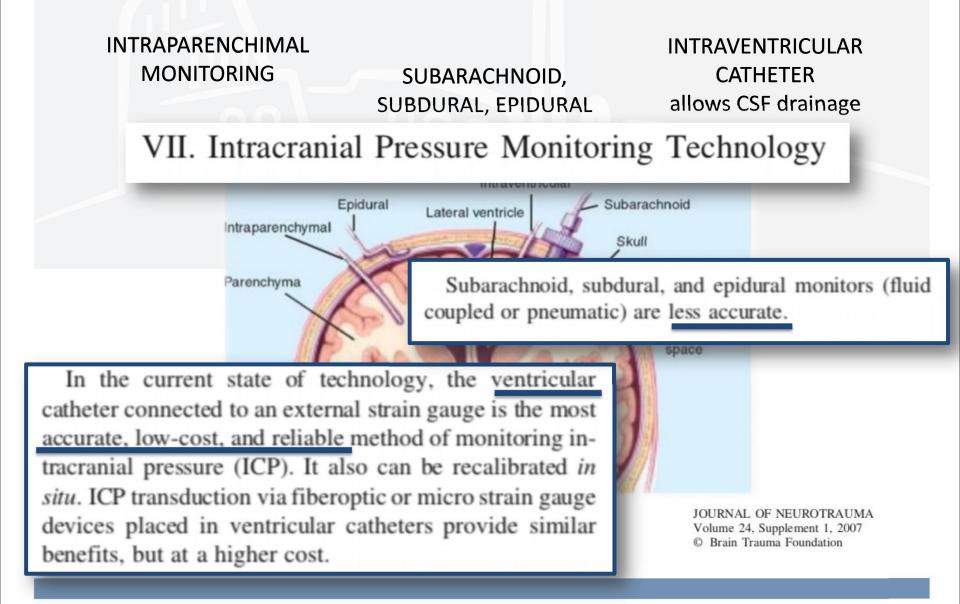

	Variable monitored	Information derived	Spatial resolution
а	Structural integrity	Space-occupying lesions, CSF space modifications, skull fractures, brain swelling	Medium
CT angiography	Cerebral vessel patency and integrity	Thrombosis and dissection in main intracranial vessels	Medium
Perfusion CT	Cerebral perfusion	Hypoperfusion or hyperperfusion	Low
MRI	Structural, functional, and biochemical integrity, cerebral vessel patency	Space-occupying lesions, CSF space modifications, brain swelling, thrombosis and dissection in main intracranial vessels, hypoperfusion or hyperperfusion, traumatic axonal injury, functional and chemical information	High

NEUROMONITORING

	Variable monitored	Variable derived	Focal or global measure	Time resolution	Risk of brain damage
Intracranial pressure monitoring with intraparenchymal monitor or ventricular catheter	Intracranial pressure	Intracranial volumes, cerebral perfusion pressure, pressure-reactivity index, intracranial compliance	Global	Continuous	Yes
Brain tissue oxygen measurement with parenchy mal probe	Brain tissue partial tension of oxygen	Oxygen diffusion and balance between oxygen supply and demand	Focal	Continuous	Yes
Cerebral microdialysis	Brain metabolites and biomarkers	Aerobic or anaerobic metabolism, brain injury severity and inflammation	Focal	Intermittent	Yes
Temperature monitoring via intraparenchy mal probe	Braintemperature	Gradient between core and brain temperature	Focal	Continuous	Yes
Intraparenchymal thermal diffusion flowmetry	Cerebral blood flow	Hypoperfusion or hyperperfusion	Focal	Continuous	Yes
Electrocorticography	Cortical and depth electrical activity	Seizure activity, spreading depolarisation	Focal	Continuous	Yes
Jugular bulb oximetry	Oxygen saturation of venous jugular haemoglobin	Cerebral arterojugular difference in oxygen content	Global	Intermittent (continuous with fibreoptic catheters)	No
EEG	Cortical electrical activity	Seizure activity, abnormal patterns	Global	Continuous	No
Transcranial doppler	Cerebral blood velocity	Critical dosing pressure, cerebral arterial impedance	Global	Intermittent	No
Optic-nerve sheath ultrasonography	Optic nerve-sheath diameter	Intracranial pressure	Global	Intermittent	No
Near-infrared spectroscopy	Cerebrovascular oxygen saturation and relative blood volume	Cerebral blood flow, cerebral autoregulation	Focal	Continuous	No

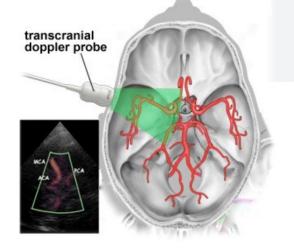
CURRENT MANAGMENT OF INTRACRANIAL HYPERTENSION

Guidelines for the Management of Severe Traumatic Brain Injury 4th Edition


IMPORTANCE OF ICP-monitoring in SEVERE TBI

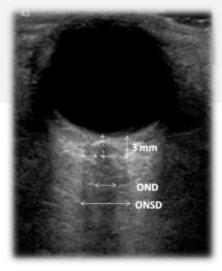
- ICP monitoring-guided managment of severe TBI is RECOMMENDED (LEV. IIB) to reduce in-hospital and 2-week mortality
- Threshold suggested: 22mmHg
- **CONSIDER inter-individual variability** in critical ICP thresholds

Recomendations from the Prior 3° edition are reported even if not supported by latest evidence

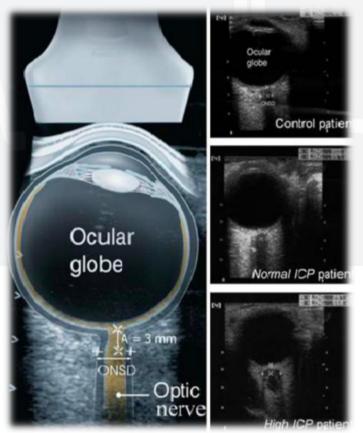

- Intracranial pressure (ICP) should be monitored in all salvageable patients with a severe traumatic brain injury (TBI) (GCS 3-8 after resuscitation) and an abnormal computed tomography (CT) scan. An abnormal CT scan of the head is one that reveals hematomas, contusions, swelling, herniation, or compressed basal cisterns.
- ICP monitoring is indicated in patients with severe TBI with a normal CT scan if two or more of the following features are noted at admission: age over 40 years, unilateral or bilateral motor posturing, or systolic blood pressure (BP) <90 mm Hg.

Intracranial Hypertension and invasive ICP-monitoring

Intracranial Hypertension and non invasive Neuromonitoring


TANSCRANIAL DOPPLER ULTRASONOGRAFY

000


Since A 24-26 MAGGIO 2018

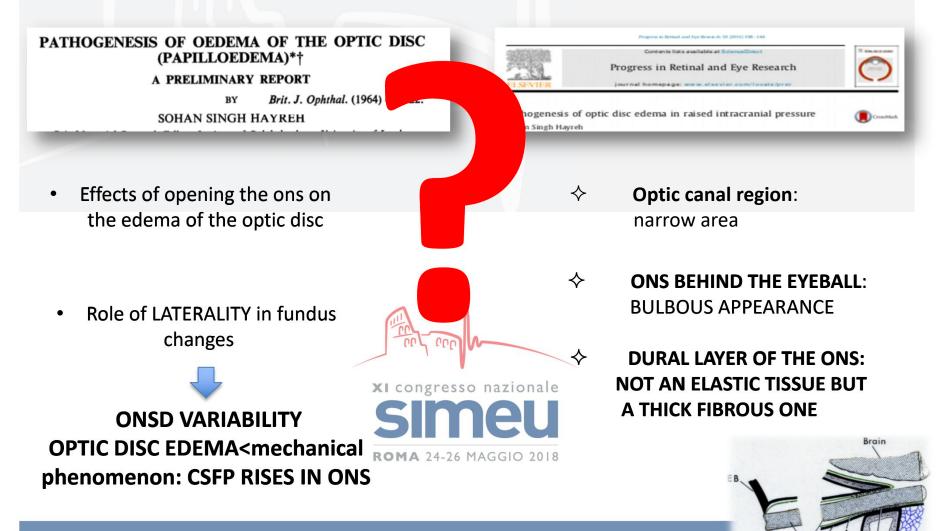
ULTRASONIC OPTIC NERVE SHEATH DIAMETER

- High fraquency linear probe (7,5 mHz)
- Temporal side-superior eyelid
- 2 measurements:
 - sagittal
 - transverse plan
- Measure ONSD 3mm behind globe

HOW TO ASSESS SONOGRAFIC ONSD

XI congresso nazionale

• Vaiman et al.:


- the most stable results 10mm from the globe
- 1. ONSD\EYEBALL DIAMETER-RATIO indicates ICP: n.v.: 0,19
- 2. EYEBALL: moving object
- 3. Moving eyeball might change the ONSD close to the globe

Quantitative relations between the eyeball, the optic nerve, and the optic canal important for intracranial pressure monitoring

Michael Vaiman^{1,3*}, Paul Gottlieb² and Inessa Bekerman²

Vaiman et al. Head & Face Medicine 2014, 10:32

PATHOGENETIC PATHWAYS: Increased ICP - Papilledema - ONS

-

INVESTIGATING the RELATIONSHIP BETWEEN ICP and ONSD

Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure: ultrasound findings during intrathecal infusion tests J Neurosurg 87:34–40, 1997

HANS-CHRISTIAN HANSEN, M.D., AND KNUT HELMKE, M.D.

Neuro-intensive Care Unit, Departments of Neurology and Pediatric Radiology, University Hospital Eppendorf, Hamburg, Germany

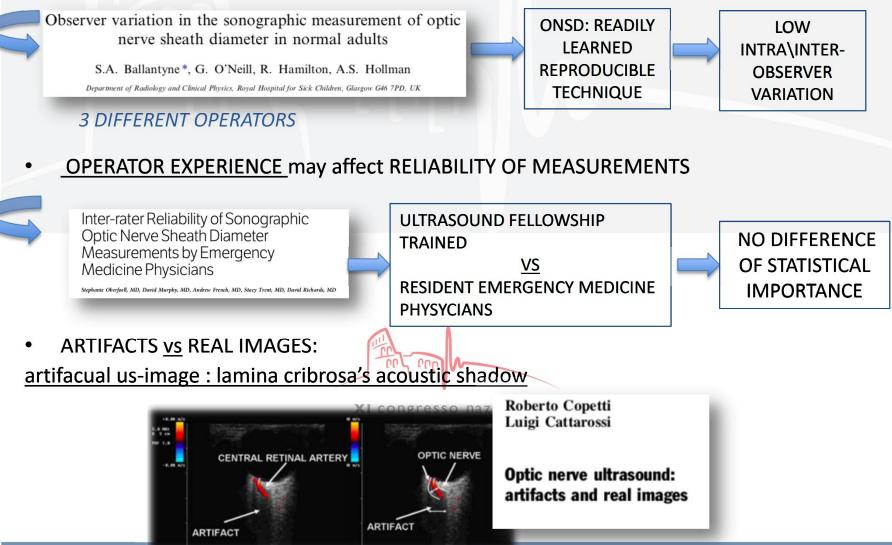
The human ONS has sufficient elasticity to ALLOW A DETECTABLE DILATION in response to INTRACRANIAL HYPERTENSION

Relationship between intracranial pressure as measured by an epidural intracranial pressure monitoring system and optic nerve sheath diameter in healthy dogs Laura A. Ilie DVM_{AJVR} •Vol 76 • No.8 •August 2015

Use of A-scan Ultrasound and Optical Coherence Tomography to Differentiate Papilledema From Pseudopapilledema

Roberto Saenz, OD, MS,¹ Han Cheng, OD, PhD,¹* Thomas C. Prager, PhD,² Laura J. Frishman, PhD,¹ and Rosa A. Tang, MD¹

ONSD differentiates papilledema from pseudopapilledema xI congresso nazionale


ROMA 24-26 MAGGIO 2018

ONSD truly resembles ICP VARIATIONS

Optom Vis Sci 2017; Vol 94(12)

RELIABILITY of ONSD MEASUREMENTS

US: OPERATOR DEPENDENT TECHNIQUE

Literature discordance in defining NORMAL CUT-OFF VALUES

Ultrasonographic measurement of the optic nerve sheath diameter and its association with eyeball transverse diameter in 585 healthy volunteers

Dong Hwan Kim¹, Jin-Sun Jun² & Ryul Kim³

• ONSD in healthy volunteers: 4.11mm

CUT-OF

ale

0 8

ONSD\ETD: more reliable than ONSD itself

Elevated Intracranial Pressure Detected by Bedside Emergency Ultrasonography of the Optic Nerve Sheath

Michael Blaivas, MD, RDMS, Daniel Theodoro, MD, RDMS, Paul R. Sierzenski, MD, RDMS

Research Open Access Optic nerve sonography in the diagnostic evaluation of adult brain injury

Theodoros Soldatos¹, Dimitrios Karakitsos², Katerina Chatzimichail¹, Matilda Papathanasiou¹, Athanasios Gouliamos¹ and Andreas Karabinis²

Furthermore: Thotakura et al. (2017)
 Suggest measuring the
 ONSD values in each institute
 TO DEFINE THE NORMAL RANGE as it is
 variable from one study to another

ONSD among healthy: A REVIEW:

- WIDE RANGE: **2,2->5,9mm**
- Different ethnicities
- Errors
- Quality of device used

literature and ONSD serial monitoring

Research Article

Optic Nerve Sheath Diameter Ultrasound Evaluation in Intensive Care Unit: Possible Role and Clinical Aspects in Neurological Critical Patients' Daily Monitoring

M. Toscano,¹ G. Spadetta,² P. Pulitano,¹ M. Rocco,³ V. Di Piero,¹ O. Mecarelli,¹ and E. Vicenzini¹

ONSD daily monitoring:

MAY help in ICU when invasive ICP is not available

- ONSD monitoring : to early identify malignant intracranial hypertension
- 21 patients who developed Brain death
- ONSD measure were performed daily pre- and post-BD

Since 24-26 MAGGIO 2018

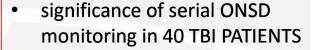
BioMed Research International,2017

literature and ONSD serial monitoring

Role of serial ultrasonic optic nerve sheath diameter monitoring in head injury

A.K. Thotakura^{a,*}, N.R. Marabathina^a, A.R. Danaboyina^b, R.R. Mareddy^a

^a Department of Neurosurgery, NRI Medical College and General Hospital, Chinakakani, Mangalagiri, Guntur, 522503 Andhra Pradesh, India ^b Department of Radiology, NRI Medical College and General Hospital, Chinakakani, Mangalagiri, Guntur, 522503 Andhra Pradesh, India


ONSD: useful when invasive ICP monitoring is not available

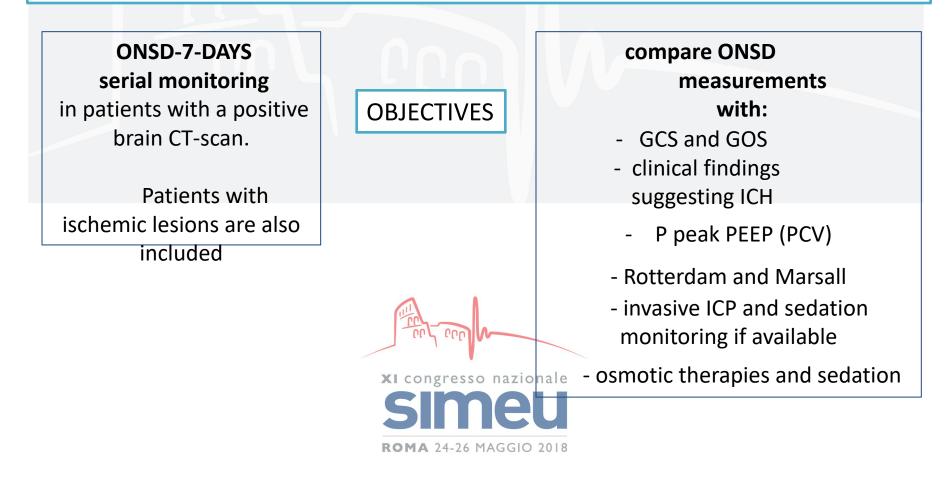
SERIAL RECORDINGS:

provides Valuable information for decision making

ROMA 24-26 MAGGIO 2018

ON ADMISSION GCS Rotterdam and Marshall ONSD performed

•


•

ONSD every 24 h to 48 h

Neurochirurgie 63 (2017) 444-448

STUDY PROTOCOL

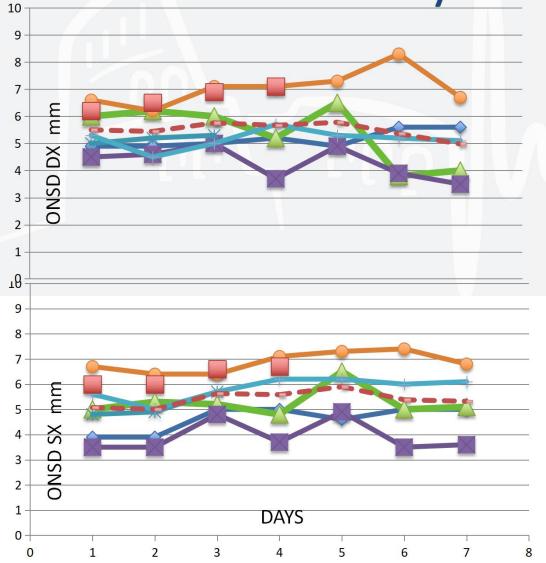
OBSERVATIONAL STUDY

STUDY PROTOCOL

METHODS

EXCLUSION CRITERIA

- age < 18 y
- glaucoma
- inflammatory, traumatic,
- tumoral pathology
- of the optic nerve
- cerebral neoplasia


XI congresso nazionale

All patients undegoing sedation and Pressure Controlled Ventilation during the 7 days-serial measurement **ONSD daily monitoring :** 2:00 pm

- linear probe 7,5 Hz
- sagittal and transverse plan
- dx \underline{VS} sx ONSD acquired

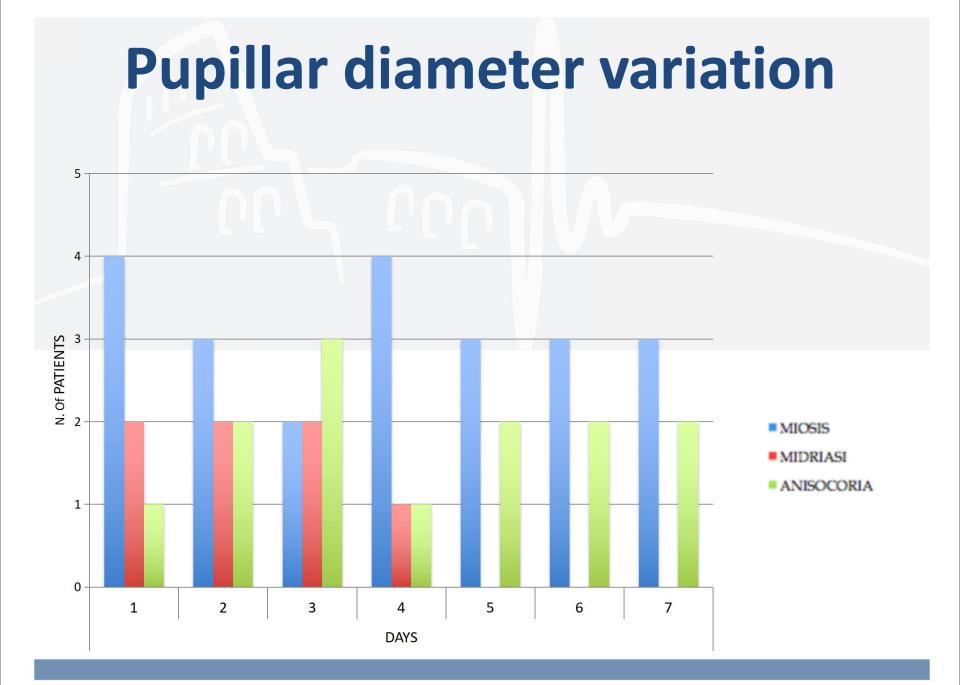
24-26 MAGGIO 2018

ONSD-7days-TREND

ONSD DX

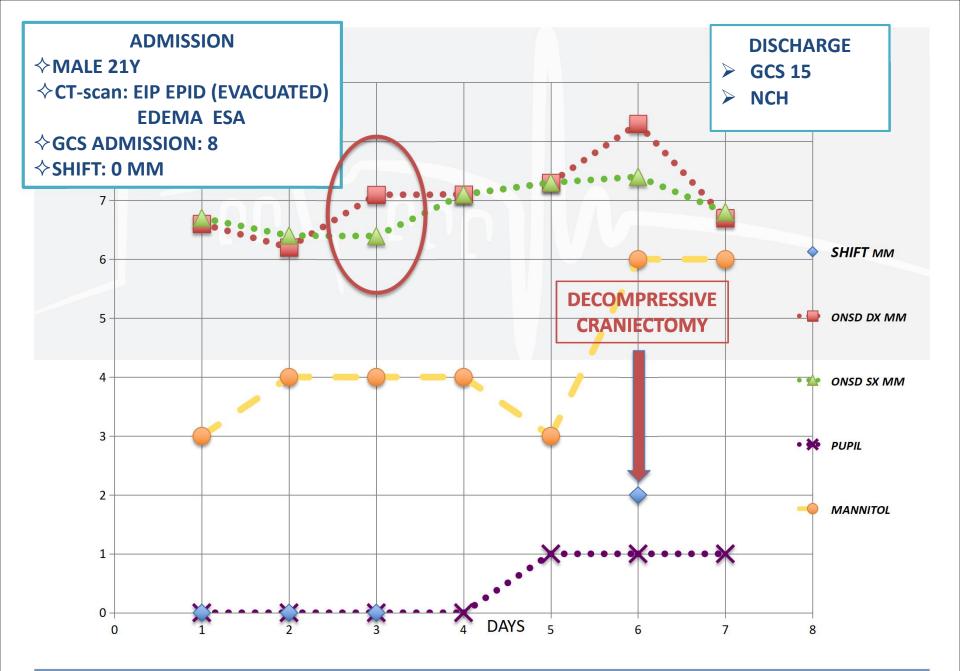
♦ MAX 8,3 mm

♦ MIN 5 mm


♦ MEDIA [4,98;5,78] mm

ONSD SX

♦ MIN 3,5 mm


♦ MAX 7,4 mm

♦ MEDIA [5;5,9] mm

Case patient 6: TBI

xI congresso nazionale Simeu Roma 24-26 MAGGIO 2018

ONSD: AS POCT can be helpful in severe TBI management and decision making in icu

 measure ONSD values among icu non-TBI population in order to define the normal threshold

 Readly learned reproducible technique: training is necessary to avoid artifacts and errors in measurements

Grazie per la cortese attenzione

xI congresso nazionale Simeu Roma 24-26 MAGGIO 2018