Updates in venous thromboembolism

Cecilia Becattini

University of Perugia

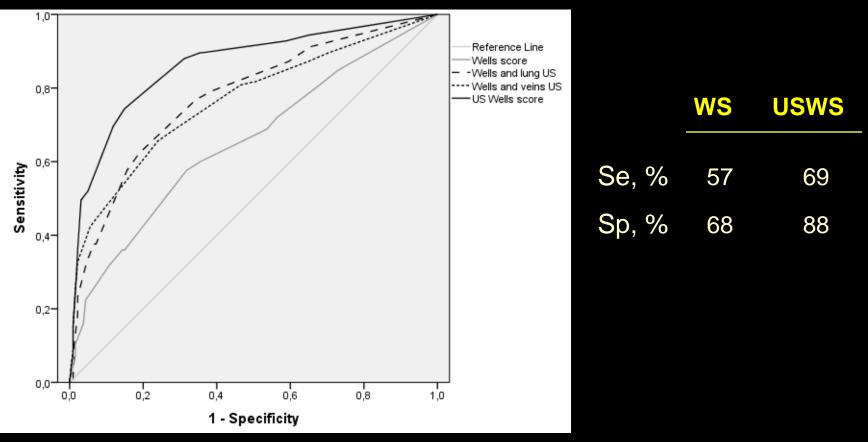
News for VTE

Diagnosis Treatment the acute phase the agents

Pulmonary embolism: diagnosis

Meta-analysis

15 studies, 6991 patients, 2001 (30%) had PE


Proximal CUS has low sensitivity and cannot be used to rule out PE. Nevertheless, its high specificity allows confirming PE.

Whole-leg CUS has a higher sensitivity but low specificity for PE and can therefore not be recommended

PE diagnosis: US combined with Wells Score

446 patients with suspected PE

125 patients with confirmed PE

Nazerian P, in press

Venous thromboembolism: diagnosis and treatment

- Diagnosis
- Treatment : the acute phase

the agents

Across the VTE spectrum

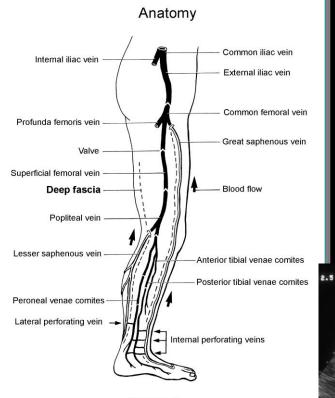
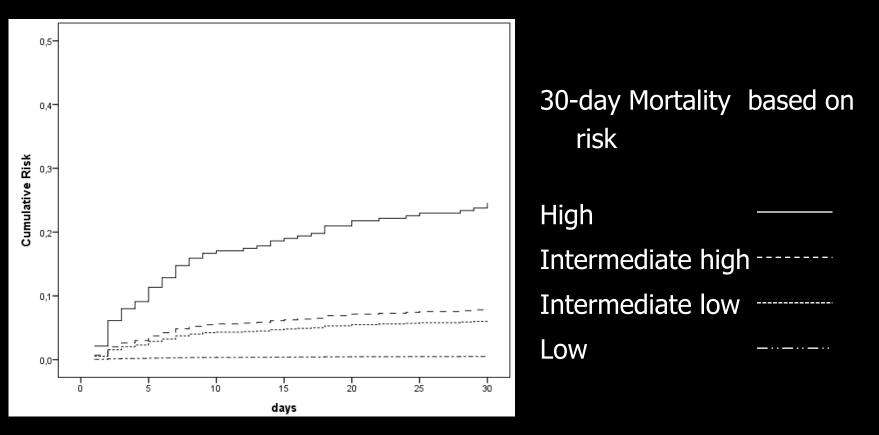


Diagram 2

Classificati	on of patient	s with acute	PE based or	n early morta	ality risk			
Early mortal	ity risk	Risk parameters and scores						
		Shock or hypotension	PESI Class III-V or sPESI >1ª	Signs of RV dysfunction on an imaging test ^b	Cardiac laboratory biomarkers ^c			
High		+	(+) ^d	+	(+) ^d			
Intermediate	Intermediate- high	-	+	Both p	oositive			
Intermediate	Intermediate- Iow	-	+		e (or none) itive ^e			
Low		-	-	Assessment optional; if assessed, both negative ^e				

PE: ESC model for risk stratification



Classification of patients with acute PE based on early mortality risk								
Early mortal	ity risk	Risk parameters and scores						
		Shock or hypotension	PESI Class III-V or sPESI >1ª	Signs of RV dysfunction on an imaging test ^b	Cardiac laboratory biomarkers ^c			
High		+	(+) ^d	+	(+) ^d			
Intermediate	Intermediate– high	-	+	Both positive				
Intermediate Intermediate- low		-	+	Either one (or none) positive ^e				
Low		-	-	Assessment optional; if assessed, both negative				

Eur Heart J 2014

2014 ESC model... in clinical practice

906 patients with acute symptomatic objectively confirmed PE

Becattini et al, Eur Resp J 2016

Tenecteplase for intermediate-high risk PE

TNK versus placebo in patients with

acute PE, normal blood pressure

right ventricle overload and increased troponin

	Tenecteplase (n=506)		Plac (n=/	P value	
	n	(%)	n	(%)	
All-cause mortality or hemodynamic collapse within 7 days of randomization	13	(2.6)	28	(5.6)	0.015

Meyer G, N Eng J Med 2014

Tenecteplase for intermediate-high risk PE

	Tenecteplase (n=506)		Plac (n=4	P value	
	n	(%)	n	(%)	
All-cause mortality within 7 days	6	(1.2)	9	(1.8)	0.43
Hemodynamic collapse within 7 days	8	(1.6)	25	(5.0)	0.002
Major	32	(6.3)	6	(1.5)	<0.001
Hemorrhagic stroke	10		1		

Meyer G, N Eng J Med2014

Ultrasound-facilitated CDT for PE

150 patients with proximal PE and right ventricle dilation at CT

	pre- procedure	48-h	р
Mean RV/LV diameter ratio	1.55	1.13	<0.0001
Mean PA systolic pressure	51.4	36.9	<0.0001
Mean modified Miller index	22.5	15.8	<0.0001

GUSTO severe bleeding GUSTO moderate bleeding

1 patient (0.5%)

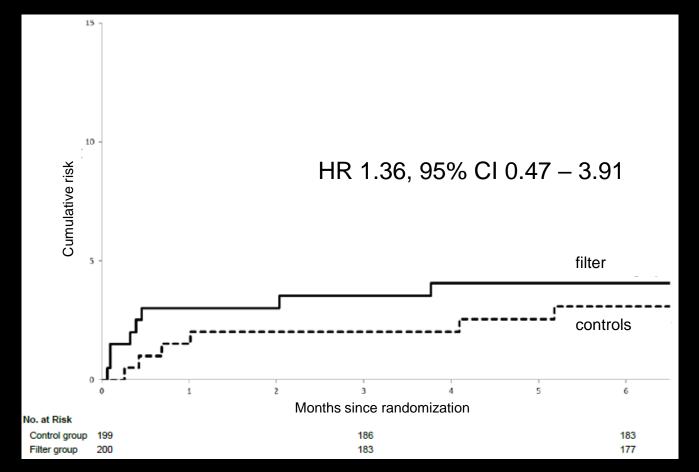
15 patients (10%)

Piazza G, JACC 2015

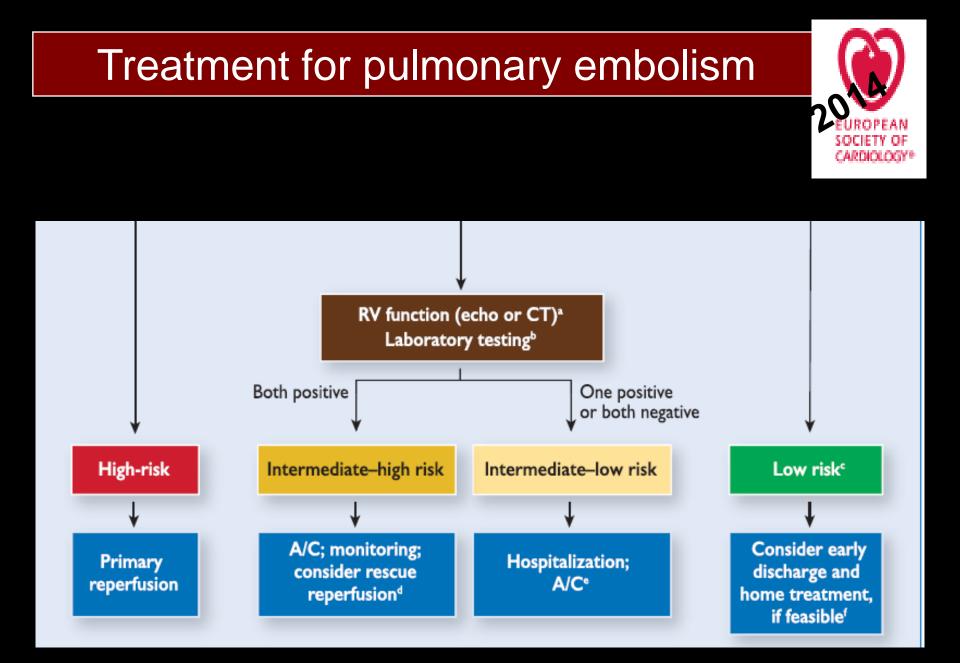
Interventional procedures for PE

- ✓ Limited number of controlled studies
- \checkmark No evidence of reduction in mortality
- ✓ Risk for peri-procedural complications
- Long-term benefit of early HD improvement not well established

ESC Guidelines: clinical management


PE without shock or hypotension (intermediate or low risk)^c

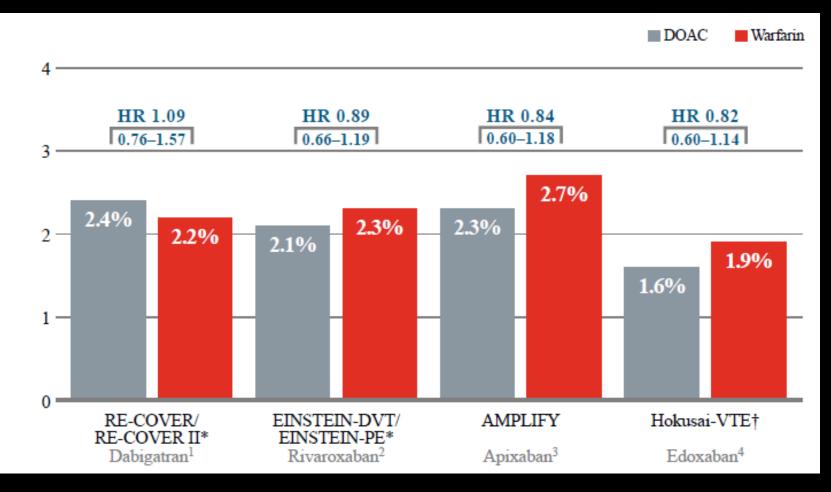
Reperfusion treatment


Routine use of primary systemic thrombolysis is not recommended in patients without shock or hypotension.	ш	В
<u>Close monitoring is re</u> commended in patients with intermediate-high- risk PE to permit early detection of haemodynamic decompensation and timely initiation of rescue reperfusion therapy.	I	B
Thrombolytic therapy <u>should be considered for patients</u> with intermediate-high-risk PE and clinical signs of haemodynamic decompensation.	lla	B
Surgical pulmonary embolectomy may be considered in intermediate- high-risk patients, if the anticipated risk of bleeding under thrombolytic treatment is high. ^f	llb	С
Percutaneous catheter-directed treatment may be considered in intermediate-high-risk patients, if the anticipated risk of bleeding under thrombolytic treatment is high. ^f	llb	B

Vena cava filter for acute PE with DVT

Recurrent VTE in patients randomized to vena cava filter implantation plus anticoagulation or anticoagulation alone

Mismetti P, JAMA 2015

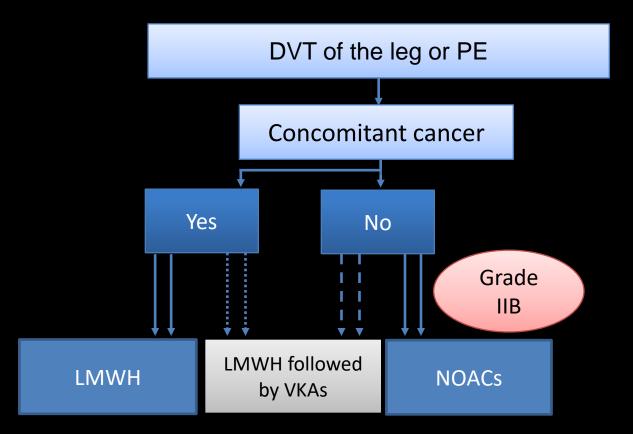


Eur Heart J 2014

Venous thromboembolism: diagnosis and treatment

- Diagnosis
- Treatment : the acute phase
 - the agents

NOACs for Treatment of VTE


NOACs in pulmonary embolism						
5 phase III studies included: 11,539 patients						
	OR	95% CI				
Recurrent VTE	0.89	(0.70-1.12)				
anti-Xa	0.89	(0.69-1.15)				
anti-IIa	0.87	(0.46-1.64)				
Major Bleeding*	0.30	(0.10-0.95)				
Clinically Relevant Bleeding*	0.89	(0.77-1.03)				

* two studies included

.....

Vedovati MC et al, Int J Cardiol 2014

The guidelines

*Same grade of recommendation for different NOACs

Clive Kearon, et al. Chest 2016

Treatment for VTE: agents & regimens

UFH, LMWH or fonda	VKAs target INR 2.0-3.0		Sequential	
UFH, LMWH or fonda	Dabigatran 150 mg twice daily	in 150 mg twice daily		
UFH, LMWH or fonda	Edoxaban 60 mg once daily *			
Riva 15mg t.d.,	Riva 20 mg once daily			
Api 10mg t.d., Api	5 mg twice daily		Single-drug approach	
LMWH 200UI/Kg once o	daily, LMWH 150UI/Kg daily	LMWH 150UI/Kg daily		
		— · — · ►		

*To be reduced to 30mg once daily if creatinine clearance of 30 to 50 ml/min or body weight <60Kg

30

21

9

7

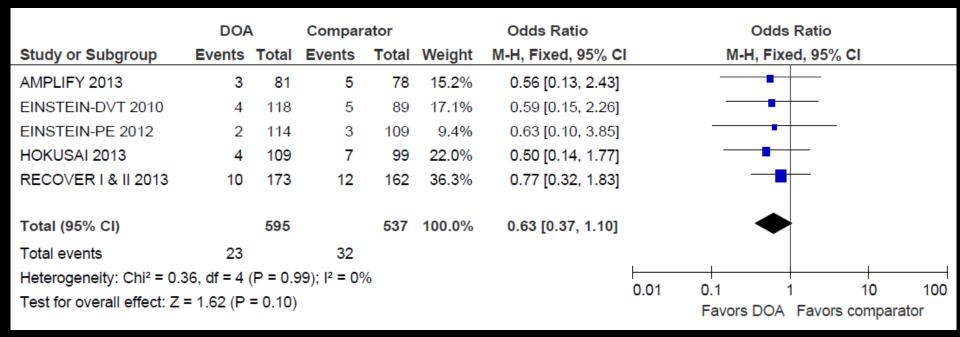
Becattini C, in press

days from diagnosis

VTE treatment: pending issues

Cancer patients Home treatment of PE Children/pregnant women Intermediate-high risk PE

ACCP: treatment of VTE in cancer patients


Guideline	Recommendations
2016	In patients with DVT of the leg or PE and CANCER
	("cancer-associated thrombosis"), as long-term (first 3 months) anticoagulant therapy, we suggest LMWH over VKA therapy
	(Grade 2C), dabigatran (Grade 2C), rivaroxaban (Grade 2C), apixaban (Grade 2C) or edoxaban (Grade 2C) *

*Same level of recommendation for VKAs and DOACs as alternative to LMWHs

DOACs for cancer-associated VTE: meta-analysis

6 studies: 1132 patients with cancer at baseline

Recurrent VTE

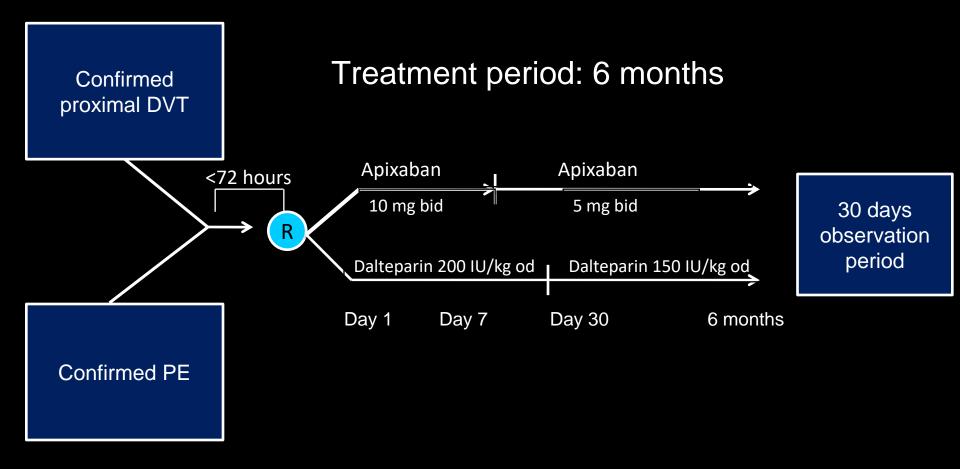
Vedovati et al, CHEST 2015

Major Bleeding

	DOA		Compar	ator		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl		M-H, Fixe	ed, 95% Cl	
AMPLIFY 2013	2	87	4	80	18.2%	0.45 [0.08, 2.51]				
EINSTEIN DVT & PE 2013	6	232	8	196	37.7%	0.62 [0.21, 1.83]			<u> </u>	
HOKUSAI 2013	5	109	3	99	13.4%	1.54 [0.36, 6.61]				
RECOVER I & II 2013	6	159	7	152	30.7%	0.81 [0.27, 2.47]				
Total (95% CI)		587		527	100.0%	0.77 [0.41, 1.44]		•		
Total events	19		22							
Heterogeneity: Chi ² = 1.40, df	= 3 (P = C).70); ا²	² = 0%							100
Test for overall effect: Z = 0.8	1 (P = 0.42	2)					0.01	0.1 Favors DOA	1 10 Favors compa	100 rator

3.2% vs 4.2%

Apixaban for treatment of VTE in cancer patients: The Caravaggio study


Giancarlo Agnelli and Cecilia Becattini

University of Perugia, Italy

Study design

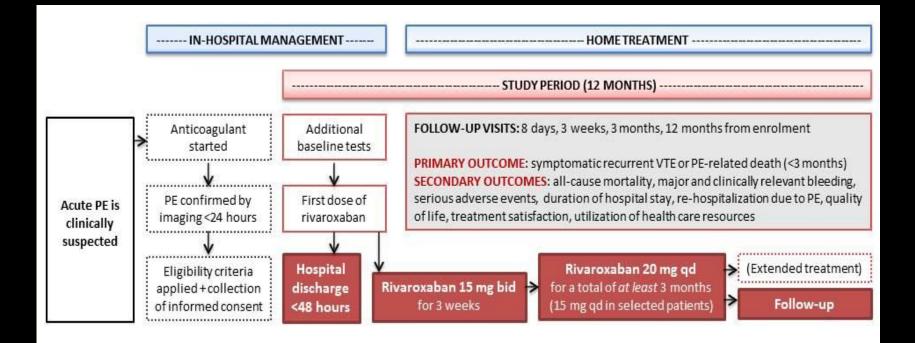
Randomized, open-label, PROBE, non inferiority study

VTE treatment: pending issues

Cancer patients Home treatment of PE Children/pregnant women Intermediate-high risk PE

PE: 3-month outcome of home treatment

13 studies (1657 patients) with outpatients (<24 h), 3 studies (256 patients) with early discharge (<72 h) 5 studies (383 patients) with inpatients


Outcome	Cohort	Studies n	Patients n	Events n		Absolute risk % (95% CI)
Recurrence	Home treatment	13	1657	33	-	1.70 (0.92–3.12)
Recurrence	Early discharge	3	256	3	•	1.12 (0.22-5.43)
Recurrence	Hospital treatmer	nt 4	329	6	•	- 1.18 (0.16-8.14)
Mortality	Home treatment	13	1657	49		1.94 (0.79-4.84)
Mortality	Early discharge	3	256	6		2.34 (1.06-5.12)
Mortality	Hospital treatmer	nt 5	383	8	•	0.74 (0.04–11.14)
Bleeding	Home treatment	12	1555	15	•	0.97 (0.58–1.59)
Bleeding	Early discharge	3	256	2	•	0.78 (0.16-3.73)
Bleeding	Hospital treatmer	nt 5	383	4	•	1.04 (0.39–2.75)
					0 5	10 15 20

Zondag W et al., Eur Resp J 2013

PE: home treatment

	Aujesky et al	Zondag et al	Agterof et al	Otero et al
Design	Open-label, RCT	Prospective cohort	Prospective cohort	Open-label, RCT
Eligibility criteria				
Systolic BP	≥100 mmHg	≥100 mmHg	≥90 mmHg	≥90 mmHg
Clinical prediction rule	PESI class I or II	Hestia	-	Uresandi 0-2
Biomarkers	No	No	NT-proBNP	Troponin T
Absence of RVD	No	No	No	TTE
Renal function	CrCl ≥30	CrCl ≥30	Creatinine <150 umol/L	No
Platelet count	≥75 000/mm³	-	-	-
Body weight	≤150 kg	-	-	BMI <30 kg/m ²
Respiratory function	SaO ₂ ≥90%, or PaO ₂ ≥60 mmHg	SaO ₂ >90% in air	$SaO_2 > 90\%$ in air	SaO₂≥ 93%; NYHA I or II severe COPD
Others	No history of HIT	No history of HIT; no hepatic impairment	-	No surgery <15 days
Time of discharge	<24 h vs inpatient management	<24 h	<24 h	3- to 5-day vs inpatient

Home treatment: the Hot-PE trial

Barco S, Thromb Haemost 2016

Updates for venous thromboembolism

- US have a good sensitivity for the diagnosis of PE
- DOACs are the treatment of choice for the majority of VTE patients
- Further evidence is awaited for cancer patients and home-treatment

Updates for venous thromboembolism

Cecilia Becattini University of Perugia, Italy

